
1
1

OpenMP*: Beyond the Common Core
A hands on tutorial

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
Intel Corp.

timothy.g.mattson@ intel.com

Yun (Helen) He
Berkeley Lab

yhe@lbl.gov

Preliminaries: Part 1

• Disclosures
– The views expressed in this tutorial are those of the

people delivering the tutorial.
– We are not speaking for our employers.
– We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:
– Help us improve … tell us how you would make this

tutorial better.

2

Preliminaries: Part 2

• Our plan for the day .. Active learning!
– We will mix short lectures with short exercises.
– You will use your laptop to connect to a multiprocessor

server.
• Please follow these simple rules
– Do the exercises that we assign and then change things

around and experiment.
– Embrace active learning!

– Don’t cheat: Do Not look at the solutions before you
complete an exercise … even if you get really frustrated.

3

Cori - Cray XC40

•  We will use the Cori system for hands on exercises today
•  9,688 Intel Knights Landing compute nodes
– 68 cores per node, 4 hardware threads per core
– Larger vector units (512 bits) with more complex instructions
– 96 GB DRAM, 16 GB on-package MCDRAM

•  2,388 Intel Xeon Haswell compute nodes: 32 cores/node
•  Cori KNL nodes are integrated with Haswell nodes on Aries

network as one system
•  Choices of Intel, Cray, and GNU compilers

4

Compile and run on Cori
•  Exercises are at
–  % cd $SCRATCH # or another local directory
–  % cp -r /project/projectdirs/training//OpenMP_May2018 .
–  % cd OpenMP_May2008/C (or …/Fortran)
–  % make

•  The default compiler is Intel. Use compiler wrappers (ftn, cc, and CC)
and the OpenMP compiler flag to build, such as:
–  % cc -qopenmp mycode.c

•  To use another compiler, such as gcc:
–  % module swap PrgEnv-intel PrgEnv-gnu
–  % cc -fopenmp mycode.c

•  To run on a compute node with an interactive batch session:
–  Haswell node: % salloc -N 1 -C haswell -q interactive -t 1:00:00
–  KNL node: % salloc -N 1 -C knl -q interactive -t 1:00:00
–  Pure OpenMP code: % ./a.out
–  Hybrid MPI/OpenMP code: % srun -n .. -c … --cpu_bind=cores ./a.out
–  You will need to set OMP_NUM_THREADS and other OpenMP environment variables

when necessary
–  We will also talk about -n, -c settings later in the Affinity section

5

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

6

OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

§ A set of compiler directives and library routines for
parallel application programmers

§ Greatly simplifies writing multi-threaded (MT) programs
in Fortran, C and C++

§ Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board. 7

OpenMP programming model:

Fork-Join Parallelism:
u Master thread spawns a team of threads as needed.

u Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions
Master
Thread
in red

A Nested
Parallel
region

Sequential Parts 8

Thread creation: Parallel regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

l Each thread calls pooh(ID,A) for ID = 0 to 3!

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 9

The worksharing-loop constructs

•  The worksharing-loop construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
 NEAT_STUFF(I); 
 } 

}

Worksharing-Loop
construct name:

• C/C++: for

• Fortran: do

The loop control index I is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the

parallel loop before any proceed
past the end of the loop

10

Reduction
•  OpenMP reduction clause:

reduction (op : list)

•  Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with

the original global value.

•  The variables in “list” must be shared in the enclosing
parallel region.

 double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

11

Do you understand Reduction?

•  What does the following code print?

int j = 2;
float sum = 1;
float Avec[100];

// Initialize Avec to a set of random values
Initialize(Avec, 100);

#pragma omp parallel for reduction(+:sum)
For (j=0; j<100; j++)
 sum *= Avec[j];

printf(“ sum = %f \n”,(float)sum);

12

Exercise: Pi with loops and a reduction

•  Start with the serial pi program (pi.c) and parallelize it with a
worksharing-loop construct

•  Your goal is to minimize the number of changes made to the
serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

Remember: OpenMP makes the loop control index in a loop workshare construct private
for you … you don’t need to do this yourself 13

Numerical integration: the pi program

∫ 	4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Δx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0 X 0.0

14

Serial PI program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0; i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

15

Exercise: for more experienced OpenMP programmers

•  Consider the program linked.c
– Traverses a linked list computing a sequence of Fibonacci numbers at

each node.

•  Parallelize this program using anything you choose in
OpenMP other than tasks.

p = listhead ;
while (p) {
 process(p);
 p=next(p) ;
}

Assume that items can
be processed
independently

16

Example: Pi with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 }
 pi = step * sum;

}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum. Note
… the loop index is local to
a thread by default.

17

Linked lists without tasks
•  See the file Linked_omp25.c

 while (p != NULL) {
 p = p->next;

 count++;
 }
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(static,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1
One Thread 48 seconds 45 seconds
Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2 18

The growth of complexity in OpenMP
•  OpenMP started out in 1997 as a simple interface for the application

programmers more versed in their area of science than computer science.

•  The complexity has grown considerably over the years!

0

50

100

150

200

250

300

350

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

2.5

2.0 2.0
1.0 1.0 1.1

4.5

4.0

3.1
3.0

Merged C/C++ and Fortran spec

C/C++ spec

Fortran spec

Page counts (not counting front matter, appendices or index) for versions of OpenMP

year

Page counts (spec only)

The complexity of the full spec is overwhelming, so we focus on the 16 constructs most OpenMP
programmers restrict themselves to … the so called “OpenMP Common Core”

19

The growth of complexity in OpenMP
•  OpenMP started out in 1997 as a simple interface for the application

programmers more versed in their area of science than computer science.

•  The complexity has grown considerably over the years!

0

50

100

150

200

250

300

350

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

2.5

2.0 2.0
1.0 1.0 1.1

4.5

4.0

3.1
3.0

Merged C/C++ and Fortran spec

C/C++ spec

Fortran spec

Page counts (not counting front matter, appendices or index) for versions of OpenMP

year

Page counts (spec only)

The complexity of the full spec is overwhelming, so we focus on the 19 constructs most OpenMP
programmers restrict themselves to … the so called “OpenMP Common Core”

Tasks added to OpenMP ...
supports irregular parallelism

20

What are tasks?

•  Tasks are independent units of work
•  Tasks are composed of:
–  code to execute
– data to compute with

•  Threads are assigned to perform the
work of each task.
– The thread that encounters the task construct

may execute the task immediately.
– The threads may defer execution until later Serial Parallel

21

Adding tasks to OpenMP required major changes
to the specification

Fork-Join Parallelism:
u Master thread spawns a team of threads as needed.

u Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions
Master
Thread
in red

Sequential Parts
22

Adding tasks to OpenMP required major changes
to the specification

Fork-Join Parallelism:
u Master thread spawns a team of threads as needed.

u Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Master
Thread
in red

Let’s focus on just one fork/join

23

Low Level details of OpenMP
1.  Program begins. Launches

Initial thread.

4.  Initial thread encounters
the parallel construct.

2.  Implicit parallel region
surrounds entire program

3.  Initial task begins execution

5.  Initial task creates a team
of threads

6.  Initial task is suspended

7.  Each thread in the team
runs the implicit task
defined by the parallel
region

8.  Threads wait at barrier

9.  Barrier satisfied

10.  Implicit tasks terminate

11.  Initial task continues

24

Why all this complexity around tasks?
Remember: a language specification is written for people who implement the language …
they have ZERO tolerance for ANY ambiguity.

By defining a thread as
an execution entity that
runs tasks, we can define
semantics in terms of
tasks and consistently
apply them everywhere.

While all these initial threads, implicit tasks, and such are confusing to the programmer,
they actually make life easier for people who implement OpenMP.

25

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved execution
across threads

int omp_get_thread_num()
int omp_get_num_threads()

Create threads with a parallel region and split up the work using the
number of threads and thread ID

double omp_get_wtime() Speedup and Amdahl's law.
False Sharing and other performance issues

setenv OMP_NUM_THREADS N

Internal control variables. Setting the default number of threads with an
environment variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions. Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

Worksharing, parallel loops, loop carried dependencies

reduction(op:list) Reductions of values across a team of threads

schedule(dynamic [,chunk])
schedule (static [,chunk])

Loop schedules, loop overheads and load balance

private(list), firstprivate(list), shared(list) Data environment

nowait Disabling implied barriers on workshare constructs, the high cost of
barriers. The flush concept (but not the concept)

#pragma omp single Workshare with a single thread

#pragma omp task
#pragma omp taskwait

Tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 19 items

26

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

27

What are tasks?

•  Task construct: a structured block of
code + a data environment

•  Inside a parallel region, a thread
encountering a task construct will
package up the code block and its data
for execution

•  The task is executed immediately, or
deferred for later execution.

•  Tasks can be nested: i.e. a task may
itself generate tasks. Serial Parallel

A common Pattern is to have one thread create the tasks while the other
threads wait at a barrier and execute the tasks

28

Single worksharing Construct

•  The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

•  A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel
{

 do_many_things();
#pragma omp single

 { exchange_boundaries(); }
 do_many_other_things();

}

29

Data copying: Copyprivate

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()
{
 int Nsize, choice;

 #pragma omp parallel private (Nsize, choice)
 {
 #pragma omp single copyprivate (Nsize, choice)
 input_parameters (*Nsize, *choice);

 do_work(Nsize, choice);
 }
}!

Used with a single region to broadcast values of privates from one member of a
team to the rest of the team

30

Task Directive

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp task
 billy();
 }
}

One Thread
packages tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

 structured-block

31

When/where are tasks complete?

•  At thread barriers (explicit or implicit)
– applies to all tasks generated in the current parallel region up to the

barrier

•  At taskwait directive
–  i.e. Wait until all tasks defined in the current task have completed.

 #pragma omp taskwait
– Note: applies only to tasks generated in the current task, not to

“descendants” .

32

Example

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma taskwait
 #pragma omp task
 billy();
 }
}

fred() and daisy()
must complete before
billy() starts

33

The task construct (OpenMP 4.5)

if([task :]scalar-expression)
untied
default(shared | none)
private(list)
firstprivate(list)
shared(list)
final(scalar-expression)
mergeable
depend(dependence-type : list)
priority(priority-value)

#pragma omp task [clause[[,]clause]...]
 structured-block

where clause is one of the following:

OpenMP 3.0 (May’08)

OpenMP 3.1 (Jul’11)

OpenMP 4.0 (Jul’13)

OpenMP 4.5 (Nov’15)

The evolution of the task construct

Generates an
explicit task

34

The task construct (OpenMP 4.5)

if([task :]scalar-expression)
untied
default(shared | none)
private(list)
firstprivate(list)
shared(list)
final(scalar-expression)
mergeable
depend(dependence-type : list)
priority(priority-value)

#pragma omp task [clause[[,]clause]...]
 structured-block

where clause is one of the following:

OpenMP 3.0

OpenMP 3.1

OpenMP 4.0

OpenMP 4.5

The evolution of the task construct

Generates an
explicit task

Consider the data
environment associated
with a task

35

Data scoping with tasks
•  Variables can be shared, private or firstprivate with respect to

task

–  If a variable is shared on a task construct, the references to it inside
the construct are to the storage with that name at the point where the
task was encountered

–  If a variable is private on a task construct, the references to it inside
the construct are to new uninitialized storage that is created when the
task is executed

–  If a variable is firstprivate on a construct, the references to it inside the
construct are to new storage that is created and initialized with the
value of the existing storage of that name when the task is
encountered

36

Data scoping defaults
•  The behavior you want for tasks is usually firstprivate, because the task

may not be executed until later (and variables may have gone out of
scope)
–  Variables that are private when the task construct is encountered are firstprivate by

default
•  Variables that are shared in all constructs starting from the innermost

enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

37

Exercise: Linked List
•  Start from your serial linked list program (linked.c)

•  Parallelize it using tasks

#pragma omp parallel
#pragma omp taskwait
#pragma omp parallel firstprivate(x) shared(y)
#pragma omp task
#pragma omp single

p = listhead ;
while (p) {
 process(p);
 p=next(p) ;
}

38

Parallel linked list traversal

#pragma omp parallel
{
 #pragma omp single
 {
 p = listhead ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p);
 }
 p=next (p) ;
 }
 }
}

makes a copy of p
when the task is
packaged

Only one thread
packages tasks

39

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

40

Divide and conquer

•  Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

n  3 Options:
¨  Do work as you split

into sub-problems
¨  Do work only at the

leaves
¨  Do work as you

recombine

41

Example: Fibonacci numbers
A classic divide and conquer problem

•  Fn = Fn-1 + Fn-2

•  Inefficient O(n2)
recursive
implementation!

int fib (int n)
{
 int x,y;
 if (n < 2) return n;

 x = fib(n-1);
 y = fib (n-2);

 return (x+y);
}

Int main()
{
 int NW = 5000;
 fib(NW);
}

Direct Solve

Split

Merge

42

Parallel Fibonacci

•  Binary tree of tasks

•  Traversed using a recursive
function

•  A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

•  x,y are local, and so by default
they are private to current task

–  must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;
 if (n < 2) return n;

#pragma omp task shared(x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib (n-2);
#pragma omp taskwait
 return (x+y);
}

Int main()
{ int NW = 5000;
 #pragma omp parallel
 {
 #pragma omp single
 fib(NW);
 }
} 43

Parallel Fibonacci again
int fib (int n)
{
int x,y;
 if (n < 2) return n;
#pragma omp task shared(x) if(n>30)
 x = fib(n-1);
#pragma omp task shared(y) if(n>30)
 y = fib(n-2);
#pragma omp taskwait
 return x+y
}
int main()
{ int NN = 5000;
 #pragma omp parallel
 {
 #pragma omp master
 fib(NN);
 }
}

Stop creating tasks at
some level in the tree.

44

Exercise: Pi with tasks

•  Start from the basic serial pi program, pi.c or pi.f
– First create a serial divide-and-conquer/recursive solution.
– Parallelize the recursive program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

Hints:
•  Think carefully about what you want the

direct solve case to be.
•  Make life easy on yourself for the

splitting and specialize to a Power-of-
two number of steps

45

Program: OpenMP tasks
#include <omp.h>
static long num_steps = 1024*1024;
#define MIN_BLK 1024
double pi_comp(int Nstart,int Nfinish,double step)
{ int i,iblk;
 double x, sum = 0.0,sum1, sum2;
 if (Nfinish-Nstart < MIN_BLK){
 for (i=Nstart;i< Nfinish; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 else{
 iblk = Nfinish-Nstart;
 #pragma omp task shared(sum1)
 sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
 #pragma omp task shared(sum2)
 sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
 #pragma omp taskwait
 sum = sum1 + sum2;
 }return sum;
}

 int main ()
 {
 int i;
 double step, pi, sum;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 #pragma omp single
 sum =

 pi_comp(0,num_steps,step);
 }
 pi = step * sum;
 }

46

Results*: pi with tasks

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.
threads 1st SPMD SPMD

critical
PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

*Intel compiler (icpc) with default optimization level (O2) on Apple OS X 10.7.3 with a dual core
(four HW thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

47

Using tasks

•  Don’t use tasks for things already well supported by
OpenMP
– e.g. standard do/for loops
– the overhead of using tasks is greater

•  Don’t expect miracles from the runtime
– best results usually obtained where the user controls the

number and granularity of tasks

48

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

49

Task definitions
•  Task: a specific instance of executable code and its data

environment.
•  Task region: all the code encountered during the execution of

a task.
•  When a task construct is encountered by a thread, the

generated task may be:
– Deferred: executed by some thread independently of generating task.
– Undeferred: completes execution before the generating task continues.
–  Included: Undeferred and executed by the thread that encounters the

task construct.

•  Tasks once started may suspend, wait, and restart.
– Tied tasks: if a thread is suspended, the same thread will restart the

thread at a later time.
– Untied tasks: if a task is suspended, any thread in the binding team may

restart the thread at a later time.
50

The task construct (OpenMP 4.5)

if([task :]scalar-expression)
untied
default(shared | none)
private(list)
firstprivate(list)
shared(list)
final(scalar-expression)
mergeable
depend(dependence-type : list)
priority(priority-value)

#pragma omp task [clause[[,]clause]...]
 structured-block

where clause is one of the following:

OpenMP 3.0

OpenMP 3.1

OpenMP 4.0

OpenMP 4.5

The evolution of the task construct

Generates an
explicit task

51

Task dependencies

!$omp task depend(type:list)
where type is in, out or inout and list is a list of variables.
–  list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++
–  in: the generated task will be a dependent task of all previously

generated sibling tasks that reference at least one of the list items in
an out or inout clause
–  out or inout: the generated task will be a dependent task of all

previously generated sibling tasks that reference at least one of the
list items in an in, out or inout clause

52

Task dependencies example

#pragma omp task depend (out:a)
 { ... } //writes a
#pragma omp task depend (out:b)
 { ... } //writes b
#pragma omp task depend (in:a,b)
 { ... } //reads a and b

•  The first two tasks can execute in parallel
•  The third task cannot start until the first two are complete

53

The task construct: the newer/rarely used clauses

final(scalar-expression)

OpenMP 3.0 OpenMP 3.1 OpenMP 4.0 OpenMP 4.5

The created task, if suspended, can be executed by
a different thread

If the scalar-expression is true, generated tasks are
undeferred and execute immediately by the
encountering thread.

The task is mergable if it is undeferred and
included (i.e. uses the parent tasks data
environment).

Gives a hint to the compiler to schedule tasks with
a larger priority value (>0) before tasks with a
lower value.

untied

mergeable

priority(priority-value)

54

Waiting for tasks to complete
#pragma omp taskwait

Causes current task region to suspend and wait for completion of all the child
tasks created before the taskwait to complete
•  A standalone directive
•  Defines a task scheduling point

#pragma omp taskgroup
 structured-block

A thread encounters the taskgroup construct. It executes the code in the
structured block.
That thread suspends and waits at the end of the taskgroup region until all child
tasks and any of their descendant tasks are complete.

OpenMP 3.0

OpenMP 4.0

55

 #pragma omp single
 {
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

•  Consider the following example ... Where the program may generate so
many tasks that the internal data structures managing tasks overflow.

Task switching

•  Solution … Task switching; Threads can switch to other tasks at certain
points called task scheduling points.

•  With Task switching, a thread can
–  Execute an already generated task … to “drain the task pool”
–  Execute the encountered task immediately (instead of deferring task

execution for later)
56

Explicit task scheduling
#pragma omp taskyield

Tells the OpenMP runtime that the current task can be suspended in favor of
execution of a different task
•  A standalone directive
•  Defines an explicit task scheduling point

OpenMP 3.1

#include <omp.h>
void something_useful (void);
void mutual_excl_op(void);
void foo (omp_lock_t * lock, int n)
{ for (int i = 0; i < n; i++)
 #pragma omp task
 { something_useful();
 while (!omp_test_lock(lock)) {
 #pragma omp taskyield
 }
 mutual_excl_op();
 omp_unset_lock(lock);
 }
}

Grab a lock if you can,
return if you can’t

Tell the runtime it can
suspend current task and

schedule another

Release the lock that protected
mutual_excl_op()

 A function that
only one task at

a time can
execute (mutual

exclusion)

57

Task scheduling Points
•  Task switching can only occur at Task Scheduling points.
•  Task scheduling points happen …
– After generation of an explicit task
– After completion of a task region
–  In a taskyield region
–  In a taskwait region
– At the end of a taskgropup or barrier
–  In and around regions associated with target constructs (not

discussed here).

•  At a task scheduling point, any of the following can happen
for any tasks bound to the current team
– Begin execution of a tied or untied task
– Resume any suspended task (tied or untied)

58

Task Scheduling Details

•  An included task is executed immediately after generation of
the task

•  Scheduling of new tied tasks is constrained by the set of task
regions that are currently tied to the thread, and that are not
suspended in a barrier region.
–  If this set is empty, any new tied task may be scheduled.
– Otherwise, a new tied task may be scheduled only if it is a descendent

task of every task in the set.

•  A dependent task shall not be scheduled until its task
dependences are fulfilled.

•  When an explicit task is generated by a construct containing an
if clause for which the expression evaluated to false, and the
previous constraints are already met, the task is executed
immediately after generation of the task.

59

Task Execution around task scheduling points

•  Think of a task as a set of “task regions” between task
scheduling points

•  Each “task region” executes uninterrupted from start to end in
the order they are encountered.

•  A correct program must behave correctly and consistently with
all conceivable scheduling sequences that are compatible with
the rules above.
–  If multiple “task regions” between scheduling points modify values in

threadprivate storage, a data race is produced and the state of
threadprivate storage is not defined.
– Lock acquire and release in different task regions may break program-

order lock protocols and deadlock.

60

The taskloop construct (OpenMP 4.5)

if([taskloop :]scalar-expr)

 shared(list)

private(list)

firstprivate(list)

lastprivate(list)

default(shared | none)

grainsize(grain-size)

num_tasks(num-tasks)

collapse(n)

final(scalar-expr)

priority(priority-value)

untied

mergeable

nogroup

#pragma omp taskloop [clause[[,]clause]...]
 structured-block

where clause is one of the following:

•  The structured block contains loops in
the standard form

•  Loop iterations are turned into tasks
that execute within a taskgroup (unless
the nogroup clause is present)

•  Grainsize specifies the number of
iterations per task

•  Num_tasks stipulates the number of
tasks to create (unless there are too
few loop iterations)

61

HMMER3: task and taskgroup to Overlap I/O and Compute

Courtesy	of	William	Arndt,	
NERSC

#pragma omp parallel {
#pragma omp single {

#pragma omp task { load_seq_buffer(); }
#pragma omp task { load_hmm_buffer(); }
#pragma omp taskwait
while(more HMMs) {

#pragma omp task { write_output();
 load_hmm_buffer(); }
while(more sequences) {

#pragma omp taskgroup {
#pragma omp task
{ load_seq_buffer(); }
for (each hmm in hmm_buffer)

#pragma omp task
{ task_kernel(); }

swap_I/
O_and_working_seq_buffers();

}
}
#pragma omp taskwait
swap_I/O_and_working_hmm_buffers();

}
}

}

62

HMMER3: use OpenMP task directives
•  Replace pthread implementation limited by performance of master thread

–  OpenMP tasks facilitate overlap of I/O and Compute
–  Forking of child tasks and task groups allow simple work stealing implementation

•  Thread scaling result on 1 Edison node (24 cores of Intel Xeon Ivy Bridge)

•  pthread HMMER3 Red
•  OpenMP HMMER3 Green

•  Dashed lines show

theoretical peak (two lines
because serial performance
is also improved)

Courtesy	of	Willaim	Arndt,	
NERSC

63

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

64

Data sharing: Threadprivate

•  Makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables, static class members

•  Different from making them PRIVATE
– with PRIVATE global variables are masked.
– THREADPRIVATE preserves global scope within each thread

•  Threadprivate variables can be initialized using COPYIN
or at time of definition (using language-defined
initialization capabilities)

65

A threadprivate example (C)

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{
 counter++;
 return (counter);
}!

Use threadprivate to create a counter for each
thread.

66

Data copying: Copyin

 parameter (N=1000)
 common/buf/A(N)
!$OMP THREADPRIVATE(/buf/)

!$ Initialize the A array
 call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

 … Now each thread sees threadprivate array A initialized
 … to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end!

You initialize threadprivate data using a copyin
clause.

67

Exercise: Monte Carlo calculations
Using random numbers to solve tough problems

•  Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

•  Example: Computing π with a digital dart board:

l  Throw darts at the circle/square.
l  Chance of falling in circle is

proportional to ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
l  Compute π by randomly

choosing points; π is four times
the fraction that falls in the circle

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148
68

Exercise: Monte Carlo pi (cont)

•  We provide three files for this exercise
– pi_mc.c: the Monte Carlo method pi program
–  random.c: a simple random number generator
–  random.h: include file for random number generator

•  Create a parallel version of this program without changing
the interfaces to functions in random.c
– This is an exercise in modular software … why should a user of your

random number generator have to know any details of the generator
or make any changes to how the generator is called as they move to
a multithreaded program?
– The random number generator must be thread-safe.

•  Extra Credit:
– Make your random number generator numerically correct (non-

overlapping sequences of pseudo-random numbers).

69

Parallel Programmers love Monte Carlo
algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{
 long i; long Ncirc = 0; double pi, x, y;
 double r = 1.0; // radius of circle. Side of squrare is 2*r
 seed(0,-r, r); // The circle and square are centered at the origin
 #pragma omp parallel for private (x, y) reduction (+:Ncirc)
 for(i=0;i<num_trials; i++)
 {
 x = random(); y = random();
 if (x*x + y*y) <= r*r) Ncirc++;
 }

 pi = 4.0 * ((double)Ncirc/(double)num_trials);
 printf("\n %d trials, pi is %f \n",num_trials, pi);
}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

70

Linear Congruential Generator (LCG)
•  LCG: Easy to write, cheap to compute, portable, OK quality

l  If you pick the multiplier and addend correctly, LCG has a period of
PMOD.

l  Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). I used the following:

u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

71

LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{
 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

Seed the pseudo random
sequence by setting
random_last

72

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10 R
elative error

Log10 number of samples

Run the same
program the
same way and
get different
answers!

That is not
acceptable!

Issue: my LCG
generator is not
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP. 73

LCG code: threadsafe version

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{
 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

random_last carries state
between random number
computations,

To make the generator
threadsafe, make
random_last threadprivate
so each thread has its own
copy.

74

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

75

The loop worksharing constructs

•  The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
 NEAT_STUFF(I); 
 } 

}

Loop construct name:

• C/C++: for

• Fortran: do

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

76

Loop worksharing constructs:
The schedule clause

•  The schedule clause affects how loop iterations are mapped onto threads
–  schedule(static [,chunk])

–  Deal-out blocks of iterations of size “chunk” to each thread.
–  schedule(dynamic[,chunk])

–  Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

–  schedule(guided[,chunk])
–  Threads dynamically grab blocks of iterations. The size of the block starts

large and shrinks down to size “chunk” as the calculation proceeds.
–  schedule(runtime)

–  Schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library).

–  schedule(auto)
–  Schedule is left up to the runtime to choose (does not have to be any of the

above).

OpenMP 4.5 added modifiers monotonic, nonmontonic and simd.
77

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED

Special case of dynamic
to reduce scheduling
overhead

AUTO When the runtime can
“learn” from previous
executions of the same
loop

loop work-sharing constructs: 
The schedule clause

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

78

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
 for (int j=0; j<M; j++) {

 }
}

79

Nested loops

•  Will form a single loop of length NxM and then parallelize
that.

•  Useful if N is O(no. of threads) so parallelizing the outer loop
makes balancing the load difficult.

Number of loops
to be
parallelized,
counting from
the outside

l  For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause:

Sections worksharing Construct
•  The Sections worksharing construct gives a different

structured block to each thread.

#pragma omp parallel
{

 #pragma omp sections
 {
 #pragma omp section
 X_calculation();
 #pragma omp section

 y_calculation();
 #pragma omp section

 z_calculation();
 }

}

By default, there is a barrier at the end of the “omp sections”.
Use the “nowait” clause to turn off the barrier. 80

Array sections with reduce
#include <stdio.h>
#define N 100
void init(int n, float (*b)[N]);
int main(){
int i,j; float a[N], b[N][N]; init(N,b);
for(i=0; i<N; i++) a[i]=0.0e0;

#pragma omp parallel for reduction(+:a[0:N]) private(j)
for(i=0; i<N; i++){
 for(j=0; j<N; j++){
 a[j] += b[i][j];
 }
}
printf(" a[0] a[N-1]: %f %f\n", a[0], a[N-1]);
return 0;

Works the same as any
other reduce … a private
array is formed for each
thread, element wise
combination across threads
and then with original array
at the end

81

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

82

Parallel loop with ordered region
•  An ordered clause on a loop worksharing construct
–  indicates that the loop contains an ordered region

•  The ordered construct defines an ordered region
–  The Statements in ordered region execute in iteration order

#pragma	omp	for	ordered	
				for	(i=0;	i<N;	i++)	{	
						float	res	=	work(i);	
						#pragma	omp	ordered	
						{	
								printf("result	for	%d	was	%f\n",	i,	res);	
								fflush(stdout);	
						}	
				}				

83

Parallelizing nested loops

•  Pattern of dependencies between elements of x prevent
straightforward parallelization

•  is there a way to manage the synchronization so we can
parallelize this loop?

#pragma	omp	parallel	for	collapse(2)	
for	(r=1;	r<N;	r++)	{	
			for	(c=1;	c<N;	c++)	{	
		
				x[r][c]	+=	fn(x[r-1][c],	x[r][c-1]);	
	
		}				
}				

•  Will these nested parallel loops execute correctly?

x[r][c]

x[r-1][c]

x[r][c-1]

An array section of x

84

Ordered stand-alone directive
•  Specifies cross-iteration dependencies in a doacross loop nest
… i.e. loop level parallelism over nested loops with a regular
pattern of synchronization to manage dependencies.

#pragma omp ordered depend(sink : vec)
#pragma omp ordered depend(source)

•  Depend clauses specify the order the threads execute
ordered regions.
– The sink dependence-type
–  specifies a cross-iteration dependence, where the iteration vector vec

indicates the iteration that satisfies the dependence.
– The source dependence-type
–  specifies the cross-iteration dependences that arise from the current

iteration.

vec is a comma
separated list of
decencies … one
per loop involved

in the
dependencies

85

Parallelizing DOACROSS loops

#pragma	omp	for	ordered(2)	collapse(2)	
				for	(r=1;	r<N;	r++)	{	
								for	(c=1;	c<N;	c++)	{	
												//	other	parallel	work	...	
												#pragma	omp	ordered	depend(sink:r-1,c)	\	
												 																		depend(sink:r,c-1)	
																x[r][c]	+=	fn(x[r-1][c],	x[r][c-1]);	
												#pragma	omp	ordered	depend(source)	
								}				
				}				 x[r][c] is complete and

released for use by other
threads

Threads wait here until x[r-1][c]
and x[r][c-1] have been released

2 loops contribute to the pattern of
dependencies … so the dependency
relations for each depend(sink) is of

length 2

86

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

87

Synchronization

•  High level synchronization:
– critical
– barrier
– atomic
– ordered

•  Low level synchronization
– flush
– locks (both simple and nested)

Synchronization is used to
impose order constraints and
to protect access to shared
data

Covered in the
common core

88

Synchronization: atomic

•  Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{
 double tmp, B;

 B = DOIT();

 #pragma omp atomic
 X += big_ugly(B);

}

#pragma omp parallel

{
 double B;

 B = DOIT();

 #pragma omp atomic
 X += big_ugly(B);

}

89

Synchronization: atomic

•  Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{
 double B, tmp;

 B = DOIT();

 tmp = big_ugly(B);

 #pragma omp atomic
 X += tmp;

}

Atomic only protects the
read/update of X

Additional forms of atomic were added in 3.1 (discussed later)
90

OpenMP memory model

l  OpenMP supports a shared memory model
l  All threads share an address space, where variable can be stored or

retrieved:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

l  Threads maintain their own temporary view of memory as well … the
details of which are not defined in OpenMP but this temporary view
typically resides in caches, registers, write-buffers, etc.

a

a

. . .

91

Flush operation
•  Defines a sequence point at which a thread enforces a

consistent view of memory.

•  For variables visible to other threads and associated with the
flush operation (the flush-set)
– The compiler can’t move loads/stores of the flush-set around a flush:
–  All previous read/writes of the flush-set by this thread have completed
– No subsequent read/writes of the flush-set by this thread have occurred

– Variables in the flush set are moved from temporary storage to shared
memory.
– Reads of variables in the flush set following the flush are loaded from

shared memory.

IMPORTANT POINT: The flush makes the calling threads temporary view match the view in
shared memory. Flush by itself does not force synchronization.
 92

Memory consistency: flush example

l  Flush forces data to be updated in memory so other threads see the most
recent value

double A;

A = compute();

#pragma omp flush(A)

 // flush to memory to make sure other
 // threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared memory APIs

Flush without a list: flush set is all thread
visible variables

Flush with a list: flush set is the list of
variables

93

Flush and synchronization

•  A flush operation is implied by OpenMP synchronizations, e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
– whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of master regions)

94

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

95

Exercise: prod_cons.c

 int main()
 {
 double *A, sum, runtime; int flag = 0;

 A = (double *) malloc(N*sizeof(double));

 runtime = omp_get_wtime();

 fill_rand(N, A); // Producer: fill an array of data

 sum = Sum_array(N, A); // Consumer: sum the array

 runtime = omp_get_wtime() - runtime;

 printf(" In %lf secs, The sum is %lf \n",runtime,sum);
 }

•  Parallelize a producer/consumer program
– One thread produces values that another thread consumes.

– The key is to
implement
pairwise
synchronization
between threads

– Often used with a
stream of
produced values
to implement
“pipeline
parallelism”

How would you modify prod_cons.c so we use two threads: one to fill the array
(producer) and another con sum the array (consumer). 96

Pairwise synchronization in OpenMP

•  OpenMP lacks synchronization constructs that work between
pairs of threads.

•  When needed, you have to build it yourself.
•  Pairwise synchronization
– Use a shared flag variable
– Reader spins waiting for the new flag value
– Use flushes to force updates to and from memory

97

Exercise: Producer/consumer
int main()
{
 double *A, sum, runtime; int numthreads, flag = 0;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 fill_rand(N, A);

 flag = 1;

 }
 #pragma omp section
 {

 while (flag == 0){

 }

 sum = Sum_array(N, A);
 }
 }
}

Put the flushes in the right places to
make this program race-free.

Do you need any other
synchronization constructs to make
this work?

Start from the serial version of proc_cons.c, parallelize the program and use flush to make
data sharing between threads race free

98

Solution (try 1): Producer/consumer
int main()
{
 double *A, sum, runtime; int numthreads, flag = 0;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 {
 fill_rand(N, A);
 #pragma omp flush
 flag = 1;
 #pragma omp flush (flag)
 }
 #pragma omp section
 {
 #pragma omp flush (flag)
 while (flag == 0){
 #pragma omp flush (flag)
 }
 #pragma omp flush
 sum = Sum_array(N, A);
 }
 }
}

Use flag to Signal when the
“produced” value is ready

Flush forces refresh to memory;
guarantees that the other thread
sees the new value of A

Notice you must put the flush inside the
while loop to make sure the updated flag
variable is seen

Flush needed on both “reader” and “writer”
sides of the communication

This program works with the x86 memory model (loads and stores use relaxed
atomics), but it technically has a race … on the store and later load of flag 99

The OpenMP 3.1 atomics (1 of 2)
•  Atomic was expanded to cover the full range of common scenarios

where you need to protect a memory operation so it occurs atomically:
 # pragma omp atomic [read | write | update | capture]

•  Atomic can protect loads
 # pragma omp atomic read
 v = x;

•  Atomic can protect stores
 # pragma omp atomic write
 x = expr;

•  Atomic can protect updates to a storage location (this is the default
behavior … i.e. when you don’t provide a clause)

 # pragma omp atomic update
 x++; or ++x; or x--; or –x; or
 x binop= expr; or x = x binop expr;

This is the
original OpenMP

atomic

100

The OpenMP 3.1 atomics (2 of 2)
•  Atomic can protect the assignment of a value (its capture) AND an

associated update operation:
 # pragma omp atomic capture
 statement or structured block

•  Where the statement is one of the following forms:
 v = x++; v = ++x; v = x--; v = –x; v = x binop expr;

•  Where the structured block is one of the following forms:

{v = x; x binop = expr;} {x binop = expr; v = x;}
{v=x; x=x binop expr;} {X = x binop expr; v = x;}
{v = x; x++;} {v=x; ++x:}
{++x; v=x:} {x++; v = x;}
{v = x; x--;} {v= x; --x;}
{--x; v = x;} {x--; v = x;}

The capture semantics in atomic were added to map onto common hardware
supported atomic operations and to support modern lock free algorithms

101

Atomics and synchronization flags
int main()
{ double *A, sum, runtime;
 int numthreads, flag = 0, flg_tmp;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 { fill_rand(N, A);
 #pragma omp flush
 #pragma omp atomic write
 flag = 1;
 #pragma omp flush (flag)
 }
 #pragma omp section
 { while (1){
 #pragma omp flush(flag)
 #pragma omp atomic read
 flg_tmp= flag;
 if (flg_tmp==1) break;
 }
 #pragma omp flush
 sum = Sum_array(N, A);
 }
 }
}

This program is truly race
free … the reads and writes
of flag are protected so the
two threads cannot conflict

Still painful and error prone
due to all of the flushes that
are required

102

OpenMP 4.0 Atomic: Sequential consistency

•  Sequential consistency:
– The order of loads and stores in a race-free program appear in some

interleaved order and all threads in the team see this same order.

•  OpenMP 4.0 added an optional clause to atomics
– #pragma omp atomic [read | write | update | capture] [seq_cst]

•  In more pragmatic terms:
–  If the seq_cst clause is included, OpenMP adds a flush without an

argument list to the atomic operation so you don’t need to.

•  In terms of the C++’11 memory model:
– Use of the seq_cst clause makes atomics follow the sequentially

consistent memory order.
– Leaving off the seq_cst clause makes the atomics relaxed.

4.0

Advice to programmers: save yourself a world of hurt … let OpenMP take care of
your flushes for you whenever possible … use seq_cst

103

Atomics and synchronization flags (4.0)
int main()
{ double *A, sum, runtime;
 int numthreads, flag = 0, flg_tmp;
 A = (double *)malloc(N*sizeof(double));
 #pragma omp parallel sections
 {
 #pragma omp section
 { fill_rand(N, A);

 #pragma omp atomic write seq_cst
 flag = 1;

 }
 #pragma omp section
 { while (1){

 #pragma omp atomic read seq_cst
 flg_tmp= flag;
 if (flg_tmp==1) break;
 }

 sum = Sum_array(N, A);
 }
 }
}

This program is truly race
free … the reads and writes of
flag are protected so the two
threads cannot conflict – and
you do not use any explicit
flush constructs (OpenMP
does them for you)

104

Synchronization: Lock routines
•  Simple Lock routines:
– A simple lock is available if it is unset.

– omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

•  Nested Locks
– A nested lock is available if it is unset or if it is set but owned by

the thread executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(),

omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the lock,
so you don’t need to use a flush on the lock variable.

A lock implies a
memory fence (a
“flush”) of all thread
visible variables

Locks with hints were added in OpenMP 4.5 to suggest a lock strategy based on
intended use (e.g. contended, unconteded, speculative,, unspeculative)

105

Synchronization: Simple locks
•  Example: conflicts are rare, but to play it safe, we must assure mutual

exclusion for updates to histogram elements.

#pragma omp parallel for
 for(i=0;i<NBUCKETS; i++){
 omp_init_lock(&hist_locks[i]); hist[i] = 0;
 }
 #pragma omp parallel for
 for(i=0;i<NVALS;i++){
 ival = (int) sample(arr[i]);
 omp_set_lock(&hist_locks[ival]);
 hist[ival]++;
 omp_unset_lock(&hist_locks[ival]);
 }

for(i=0;i<NBUCKETS; i++)
 omp_destroy_lock(&hist_locks[i]);

Free-up storage when done.

One lock per element of hist

Enforce mutual
exclusion on update
to hist array

106

Exercise: Histograms

•  Consider the file hist.c.
– The program generates a sequence of pseudo random numbers,

does some work for each one (compute a Fibonacci number), then
puts the pseudorandom number into a bin in a histogram.

•  Parallelize the program and evaluate the performance.
#pragma omp parallel for
#pragma omp critical
pragma omp atomic [read | write | update | capture]
omp_lock_t lck;
omp_init_lock(&lck)
omp_set_lock(&lck)
omp_unset_lock(&lck)
omp_test_lock(&lck)
omp_destroy_lock(&lck)

These are thread safe and
can be called inside a
parallel region

107

Synchronization: Simple locks
•  Example: conflicts are rare, but to play it safe, we must assure mutual

exclusion for updates to histogram elements.

omp_lock_t hist_locks[NBUCKETS];
#pragma omp parallel for
 for(i=0;i<NBUCKETS; i++){
 omp_init_lock(&hist_locks[i]); hist[i] = 0;
 }
 #pragma omp parallel for
 for(i=0;i<NVALS;i++){
 ival = (int) sample(arr[i]);
 omp_set_lock(&hist_locks[ival]);
 hist[ival]++;
 omp_unset_lock(&hist_locks[ival]);
 }

for(i=0;i<NBUCKETS; i++)
 omp_destroy_lock(&hist_locks[i]); Free-up storage when done.

One lock per element of hist

Enforce mutual
exclusion on update
to hist array

108

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

109

Common architectures
•  Shared Memory Architecture
– Multiple CPUs share global memory
– Uniform Memory Access (UMA) or SMP (Symmetric Multiprocessor)
–  Equal cost to any location in memory

– Non-Uniform Memory Access (NUMA)
– Unequal cost across memory locations

– Typical Shared Memory Programming Model: OpenMP, Pthreads, …

•  Distributed Memory Architecture
– Each CPU has own memory
– Typical Message Passing Programming Model: MPI, …

•  Hybrid Architecture
– Shared memory node or socket
– Distributed memory architecture between nodes
– Typical Hybrid Programming Model: hybrid MPI/OpenMP, ...

110

Current architecture trend

•  Multi-socket nodes with rapidly increasing core counts
•  Memory per core decreases
•  Memory bandwidth per core decreases
•  Network bandwidth per core decreases
•  Need a hybrid programming model with three levels of

parallelism
– MPI between nodes or sockets
– Shared memory (such as OpenMP) on the nodes/sockets
–  Increase vectorization for lower level loop structures

111

NUMA systems
• Most systems today are Non-Uniform Memory Access (NUMA)
• Accessing memory in remote NUMA is slower than accessing

memory in local NUMA
• Accessing High Bandwidth Memory is faster than DDR

Diagram courtesy Ruud van der Pas

All modern CPUs include caches therefore all
modern systems are NUMA even though we
often pretend they are UMA

112

MCDRAM MCDRAM MCDRAM

MCDRAM

MCDRAM

MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

Up to
72 cores

HFI

DDR4

DDR4

DDR4

PCIe Gen3
x36

6 channels
DDR4
Up to

384GB
~90 GB/s

On-package
2 ports OPA

Integrated Fabric

Up to 16GB high-bandwidth on-
package memory (MCDRAM)

Exposed as NUMA node
>400 GB/s sustained BW

Up to 72 cores (36 tiles)
2D mesh architecture

Over 6 TF SP peak
Full Xeon ISA compatibility

through AVX-512

Core Core

2 VPU 2
VPU

1M
B

 L
2

H
U

B

Tile

M
ic

ro
-C

oa
x

C
ab

le
 (I

FP
)

M
ic

ro
-C

oa
x

C
ab

le
 (I

FP
)

2x 512b VPU per core
(Vector Processing Units)

Based on Intel® Atom™ processor with many
HPC enhancements

Deep out-of-order buffers
Gather/scatter in hardware

Improved branch prediction
4 threads/core

High cache bandwidth

 NUMA example: the Intel® Xeon Phi™ processor

•  Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale and does not include
all functional areas of the CPU, nor does it represent actual component layout.

113

 Example compute nodes (Intel Haswell*)

•  An Intel Haswell node has 32 cores (64 CPUs), 128 MB DDR memory.
•  2 NUMA domains per node, 16 cores per NUMA domain. 2 hardware

threads (CPUs) per core.
•  Memory bandwidth is non-homogeneous among NUMA domains.
–  CPUs 0-15, 32-47 are closer to memory in NUMA domain 0, farther to memory in NUMA

domain 1.
–  CPUs 16-31, 48-64 are closer to memory in NUMA domain 1, farther to memory in NUMA

domain 0.

*Haswell: 16-core Intel® Xeon™ Processor E5-2698 v3 at 2.3 GHz 114

Tools to check compute node info

•  numactl: controls NUMA policy for processes or shared memory
– numactl -H: provides NUMA info of the CPUs

% numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
node 0 size: 64430 MB
node 0 free: 63002 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63
node 1 size: 64635 MB
node 1 free: 63395 MB
node distances:node 0 1
0: 10 21
1: 21 10

Cori Haswell node example
32 cores, 2 sockets

115

 Example compute nodes (Cori KNL*)

•  A quad,cache node has only 1 NUMA node with all CPUs on the NUMA node 0 (DDR
memory). The MCDRAM is hidden from the “numactl -H” result since it is a cache.

•  A quad,flat node has only 2 NUMA nodes with all CPUs on the NUMA node 0 (DDR
memory). And NUMA node 1 has MCDRAM only.

•  A snc2,flat node has 4 NUMA domains with DDR memory and all CPUs on NUMA nodes 0
and 1. (NUMA node 0 has physical cores 0 to 33 and all corresponding hyperthreads, and
NUMA node 1 has physical cores 34 to 67 and all corresponding hyperthreads). NUMA
nodes 2 and 3 have MCDRAM only.

•  A Cori KNL node has 68 cores/272 CPUs, 96 GB DDR memory, 16 GB high
bandwidth on package memory (MCDRAM).

•  Three cluster modes, all-to-all, quadrant, sub-NUMA clustering, are available
at boot time to configure the KNL mesh interconnect.

*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 GHz 116

available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
264 265 266 267 268 269 270 271
node 0 size: 96723 MB
node 0 free: 93924 MB
node 1 cpus:
node 1 size: 16157 MB
node 1 free: 16088 MB
node distances:
node 0 1
 0: 10 31
 1: 31 10

Intel KNL quad,flat node example

% numactl –H

•  The quad,flat mode has only 2 NUMA nodes with all CPUs on the
NUMA node 0 (DDR memory).

•  And NUMA node 1 has MCDRAM (high bandwidth memory).

Cori KNL quad,flat node example
64 cores, 272 hardware threads

117

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

118

What do Data Locality and Affinity mean in OpenMP

•  Data Locality
– Memory Locality: allocate memory as close as possible to the core

on which the task that requested the memory is running
– Cache Locality: use data in cache as much as possible

•  Affinity
– Process Affinity: bind processes (MPI tasks, etc.) to CPUs
– Thread Affinity: further binding threads to CPUs that are allocated to

their parent process

•  Correct process, thread and memory affinity is the basis for
getting optimal performance.

119

 Memory Locality

•  Memory access from different NUMA domains are different
– Accessing memory in remote NUMA is slower than accessing

memory in local NUMA
– Accessing High Bandwidth Memory on KNL* is faster than DDR

•  OpenMP does not explicitly map data across shared
memories

•  Memory locality is important since it impacts both memory
and intra-node performance

*KNL: Intel® Xeon Phi™ processor 7250 with 68 cores @ 1.4 Ghz … the
“bootable” version that sits in a socket, not a co-processor

120

OpenMP Thread Affinity
•  OpenMP provides a mechanism to map threads to hardware

execution units (e.g. hardware threads, cores, sockets), with the
following goals:
–  Maximize resource utilization
–  Minimize thread contention for the same hardware resource
–  Maximize local accesses and minimize remote memory accesses in

NUMA
•  Develop strategies for memory latency programs vs. memory

bandwidth bound programs
–  Cache reuse by threads
–  Bandwidth aggregation
–  Reduce thread synchronization overheads

•  Bind OpenMP threads to the hardware threads or cores

121

OpenMP thread affinity concepts

• Three main concepts:

OpenMP
Threads

Mapping
Strategy

OMP_PLACES
Environment Variable

(e.g. threads, cores,
sockets)

OMP_PROC_BIND
Environment Variable

Or
proc_bind() clause

of parallel region

OMP_NUM_THREADS
Environment Variable

Or
num_threads() clause

of parallel region

Courtesy of Oscar Hernandez, ORNL

122

Hardware
Abstraction

 Runtime Environment Variable: OMP_PLACES (1)

•  OpenMP 4.0 added OMP_PLACES environment variable
–  controls thread allocation
– defines a series of places to which the threads can be assigned

•  OMP_PLACES can be
–  threads: each place corresponds to a single hardware thread on the

target machine.
–  cores: each place corresponds to a single core (having one or more

hardware threads) on the target machine.
–  sockets: each place corresponds to a single socket (consisting of one

or more cores) on the target machine.
– A list with explicit CPU ids (see next slide)

•  Examples:
– export OMP_PLACES=threads
– export OMP_PLACES=cores

123

 Runtime Environment Variable: OMP_PLACES (2)

•  OMP_PLACES can also be
– A list with explicit place values of CPU ids, such as:
–  "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}”
–  “{0:4},{4:4},{8:4},{12:4}” (default stride is 1)
–  Format: {lower-bound:length:stride}. Thus, specifying {0:3:2} is the same

as specifying {0,2,4}

•  Examples:
–  export OMP_PLACES=“ {0:4:2},{1:4:2}” (which is equivalent to “{0,2,4,6},

{1,3,5,7}”)
–  export OMP_PLACES=“{0:8:1}” (which is equivalent to “{0,1,2,3,4,5,6,7}”

124

Runtime Environment Variable: OMP_PROC_BIND

 •  Controls thread affinity within and between OpenMP places

•  OpenMP 3.1 only has OMP_PROC_BIND, either TRUE or
FALSE.
–  If true, the runtime will not move threads around between processors.

•  OpenMP 4.0 still allows the above. Added options:
–  close: bind threads close to the master thread
–  spread: bind threads as evenly distributed (spread) as possible
– master: bind threads to the same place as the master thread

 (Can be used when master thread is bound to core or socket)

•  Examples:
– OMP_PROC_BIND=spread
– OMP_PROC_BIND=spread,close (for nested levels)

125

Considerations for OMP_PROC_BIND choices

•  Selecting the “right” binding is dependent on the
architecture topology but also on the application
characteristics

•  Putting threads apart (“spread”, e.g. different sockets)
–  Can help to improve aggregated memory bandwidth
–  Combine the cache sizes across cores
–  May increase the overhead of synchronization across far apart

threads
–  Aggregates memory bandwidth to/from accelerator(s)

•  Putting threads near (“close”, e,g. hardware threads or
cores sharing caches)
–  Reverse impact as “spread”
–  Good for synchronization and data reuse
–  May decrease total memory bandwidth

126

Runtime Environment Variable: OMP_PROC_BIND (2)

•  Prototype example: 4 cores total, 2 hyperthreads per core, 4 OpenMP threads
•  none: no affinity setting.
•  close: Bind threads as close to each other as possible

•  spread: Bind threads as far apart as possible.

•  master: bind threads to the same place as the master thread

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 1 2 3

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 1 2 3

127

 Memory Affinity: “First Touch” memory

Red: step 1.1 + step 2. No First Touch
Blue: step 1.2 + step 2. First Touch

 Step 1.1 Initialization
 by master thread only
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

 Step 1.2 Initialization
 by all threads
 #pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

 Step 2 Compute
 #pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j]=b[j]+d*c[j];}

•  Memory affinity is not defined when
memory was allocated, instead it will be
defined at initialization.

•  Memory will be local to the thread which
initializes it. This is called first touch
policy.

OMP_PROC_BIND=close

128

“Perfect Touch” is hard
•  Hard to do “perfect touch” for real applications.
•  General recommendation is to use number of threads

fewer than number of CPUs per NUMA domain.
•  For example: 16 cores (32 CPUs) per NUMA domain.

Sample run options:
– 2 MPI tasks, 1 MPI task per NUMA domain, with 32 OpenMP

threads (if using hyperthreads) or 16 OpenMP threads (if not using
hyperthreads) per MPI task
– 4 MPI tasks, 2 MPI tasks per NUMA domain, with 16 OpenMP

threads (if using hyperthreads) or 8 OpenMP threads (if not using
hyperthreads) per MPI task
– …

129

 Cache coherence and false sharing
•  ccNUMA node: cache-coherence NUMA node.
•  Data from memory are accessed via cache lines.
•  Multiple threads hold local copies of the same (global) data in their caches.

Cache coherence ensures the local copy to be consistent with the global data.
•  Main copy needs to be updated when a thread writes to local copy.
•  Writes to same cache line from different threads is called false sharing or

cache thrashing, since it needs to be done in serial. Use atomic or critical to
avoid race condition.

•  False sharing significantly degrade performance. Tips for avoiding:
–  use private variables
–  pad arrays so each thread will update a different cache line
–  use critical or atomic for update

130

 False sharing example

False sharing
int A[N];
#pragma omp parallel for schedule (static, 1)
for (i=0; i<N; i++) {
 A[i] += i;

No false sharing, array is padded
int A[N][cache_line_size];
#pragma omp parallel for schedule (static, 1)
for (i=0; i<N; i++) {
 A[i][0] += i;

•  One solution: Pad arrays so elements you use are on distinct
cache lines.

•  Array A is shared. Chunk size is 1.
•  Updating A[0] or A[1] requires entire cache line update to

retain cache coherency.
•  Loop essentially becomes serial.

131

 Cache Locality
•  Cache locality means to use data in cache as much as

possible
•  Tips often used in real codes
– Pin threads and associate threads onto regions of system
– Exploit “first touch” data policy
– Privatize data
– Optimize code for cache
– Use a memory stride of 1
–  Fortran: column-major order
–  C: row-major order

–  Access variable elements in the same order as they are stored in
memory

–  Interchange loops or index orders if necessary

•  If performance is bad, look for false sharing
– Occurs frequently, performance degradation can be catastrophic

132

 OMP_PROC_BIND choices for STREAM

OMP_NUM_THREADS=32
OMP_PLACES=threads

OMP_PROC_BIND=close
Threads 0 to 31 bind to CPUs
0,32,1,33,2,34,…15,47. All
threads are in the first socket. The
second socket is idle. Not optimal.

OMP_PROC_BIND=spread
Threads 0 to 31 bind to CPUs
0,1,2,… to 31. Both sockets and
memory are used to maximize
memory bandwidth.

Blue: OMP_PROC_BIND=close
Red: OMP_PROC_BIND=spread
Both with First Touch

133

Other Runtime Environment Variables for
affinity support

•  OMP_NUM_THREADS
•  OMP_THREAD_LIMIT
•  OMP_NESTED
•  OMP_MAX_ACTIVE_LEVELS

•  Names are upper case, values are case insensitive

134

 Affinity clauses for OpenMP parallel construct

•  The “num_threads” and “proc_bind” clauses can be used
– The values set with these clauses take precedence over values set

by runtime environment variables

•  Helps code portability
•  Examples:
– C/C++:
 #pragma omp parallel num_threads(2) proc_bind(spread)
– Fortran:
 !$omp parallel num_threads (2) proc_bind (spread)

 ...
 !$omp end parallel

135

 Runtime APIs for thread affinity support

•  OpenMP 4.5 added runtime functions to determine the effect
of thread affinity clauses

•  Query functions for OpenMP thread affinity were added
– omp_get_num_places: returns the number of places
– omp_get_place_num_procs: returns number of processors in the

given place
– omp_get_place_proc_ids: returns the ids of the processors in the

given place
– omp_get_place_num: returns the place number of the place to

which the current thread is bound
– omp_get_partition_num_places: returns the number of places in

the current partition
– omp_get_partition_place_nums: returns the list of place numbers

corresponding to the places in the current partition

136

 Other Runtime APIs for thread affinity support

•  omp_get_nested, omp_set_nested
•  omp_get_thread_limit
•  omp_get_level
•  omp_get_active_level
•  omp_get_max_active_levels, omp_set_max_active_levels
•  omp_get_proc_bind, omp_set_proc_bind
•  omp_get_num_threads, omp_set_num_threads
•  omp_get_max_threads

137

Exercise: “First Touch” with STREAM benchmark

•  STREAM benchmark codes: stream.c, stream.f
•  Check the source codes to see if “first touch” is implemented
•  With “first touch” on (stream.c) and off (stream_nft.c), experiment with

different OMP_NUM_THREADS and OMP_PROC_BIND settings to
understand how “first touch” and OMP_PROC_BIND choices affect
STREAM memory bandwidth results on Haswell (look at the Best Rate
for Triad in the output).

•  Compare your results with a few data points on the two STREAM plots
shown earlier in this slide deck.

138

 Sample nested OpenMP program

#include <omp.h>
#include <stdio.h>
void report_num_threads(int level)
{
 #pragma omp single {
 printf("Level %d: number of threads in the
team: %d\n", level, omp_get_num_threads());
 }
}
int main()
{
 omp_set_dynamic(0);
 #pragma omp parallel num_threads(2) {
 report_num_threads(1);
 #pragma omp parallel num_threads(2) {
 report_num_threads(2);
 #pragma omp parallel num_threads(2) {
 report_num_threads(3);
 }
 }
 }
 return(0);
}

% a.out
Level 1: number of threads in the team: 2
Level 2: number of threads in the team: 1
Level 3: number of threads in the team: 1
Level 2: number of threads in the team: 1
Level 3: number of threads in the team: 1

% export OMP_NESTED=true
% export OMP_MAX_ACTIVE_LEVELS=3
% a.out
Level 1: number of threads in the team: 2
Level 2: number of threads in the team: 2
Level 2: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2
Level 3: number of threads in the team: 2

Level 0: P0
Level 1: P0 P1
Level 2: P0 P2; P1 P3
Level 3: P0 P4; P2 P5; P1 P6; P3 P7

139

Process and Thread Affinity in nested OpenMP

•  A combination of OpenMP environment variables and run time flags are needed
for different compilers and different batch schedulers on different systems.

•  Use num_threads clause in source codes to set threads for nested regions.
•  For most other non-nested regions, use OMP_NUM_THREADS environment

variable for simplicity and flexibility.

Example: Use Intel compiler with SLURM on Cori Haswell:
export OMP_NESTED=true
export OMP_MAX_ACTIVE_LEVELS=2
export OMP_NUM_THREADS=4,4
export OMP_PROC_BIND=spread,close
export OMP_PLACES=threads
srun -n 4 -c 16 --cpu_bind=cores ./nested.intel.cori

spread

close

Illustration of a system with:
2 sockets, 4 cores per socket,
4 hyper-threads per core

initial

#pragma omp parallel proc_bind(spread)
 #pragma omp parallel proc_bind(close)

140

 When to use nested OpenMP

•  Beneficial to use nested OpenMP to allow more fine-grained
thread parallelism.

•  Some application teams are exploring with nested OpenMP
to allow more fine-grained thread parallelism.
– Hybrid MPI/OpenMP not using node fully packed
– Top level OpenMP loop does not use all available threads
– Multiple levels of OpenMP loops are not easily collapsed
– Certain computational intensive kernels could use more threads
– MKL can use extra cores with nested OpenMP

•  Nested level can be arbitrarily deep.

141

 Use multiple threads in MKL

•  By Default, in OpenMP parallel regions, only 1 thread will be
used for MKL calls.
– MKL_DYNAMICS is true by default

•  Nested OpenMP can be used to enable multiple threads for
MKL calls. Treat MKL as a nested inner OpenMP region.

•  Sample settings

export OMP_NESTED=true
export OMP_PLACES=cores
export OMP_PROC_BIND=spread,close
export OMP_NUM_THREADS=6,4
export MKL_DYNAMICS=false
export OMP_MAX_ACTIVE_LEVELS=2

FFT3D on KNC, Ng=643 example

Courtesy of Jeongnim Kim, Intel

*KNC: Intel® Xeon Phi™ processor (Knights Corner) … the first generation co-processor version of the chip.
142

 Exercise: affinity choices
•  Pure OpenMP code: xthi-omp.c
•  Nested OpenMP code: xthi-nested-omp.c
•  Sample output:

% ./xthi-omp |sort –k4n
Hello from thread 0, on nid00011. (core affinity = 0)
Hello from thread 1, on nid00011. (core affinity = 4)
Hello from thread 2, on nid00011. (core affinity = 8) ...

•  Experiment with different OMP_NUM_THREADS,
OMP_PROC_BIND, and OMP_PLACES settings to check thread
affinity on different compute node architectures (for example, Cori
Haswell and KNL).

•  Make sure to understand the CPU output values in “core affinity=xxx”
report.

143

Essential runtime settings for KNL MCDRAM
Memory Affinity
•  In quad, cache mode, no special setting is needed to use

MCDRAM
•  In quad,flat mode, using quad,flat as an example
– NUMA node 1 is MCDRAM

•  Enforced memory mapping to MCDRAM
–  If using >16 GB, malloc will fail
– Use “numactl -m 1 ./myapp” as the executable

•  (instead of “./myapp”)

•  Preferred memory mapping to MCDRAM:
–  If using >16 GB, malloc will spill to DDR
– Use “numactl -p 1 ./myapp” as the executable

 (instead of “./myapp”)

144

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

145

Choice of programming models for modern
HPC systems

•  MPI was developed primarily for inter-address space (inter means between or among)

•  OpenMP was developed for shared memory or intra-node, and now supports
accelerators as well (intra means within)

•  Hybrid Programming (MPI+X) is when we use a solution with different programming
models for inter vs. intra-node parallelism

•  Several solutions including
–  Pure MPI
–  MPI + Shared Memory (OpenMP)
–  MPI + Accelerator programming

•  OpenMP 4.5 shared memory + offload, OpenACC, CUDA, etc
–  MPI message passing + MPI shared memory
–  PGAS: UPC/UPC++, Fortran 2008 coarrays, GA, OpenSHMEM, etc
–  Runtime tasks (Legion, HPX, HiHat (draft), etc)
–  Other hybrid based on Kokkos, Raja, SYCL, C++17 (C++20 draft)

NERSC data from 2015:
When asked: If you use MPI + X,
what is X ?

Courtesy of Alice Koniges and Oscar Hernandez

146

Why Hybrid MPI + OpenMP?
• Homogeneous and Heterogeneous systems have large core counts per

node. For example:
– NERSC Cori: Xeon Phi (KNL) 68 cores, 4 hardware threads per core. Total of 272

threads per node
– ORNL Summit: Total 176 (SMT4) Power9 threads + 6 Volta GPUs per node

• Application may run with MPI everywhere, but possibly not good
performance
– Needs hybrid programming to manage threading, improve SIMD, accelerator

programming
• Hybrid MPI/OpenMP is a recommended programming model to achieve

scaling capability and code portability, new trend
•  Incremental parallelism with OpenMP for cores and accelerators
• Some applications have two levels of parallelism naturally; advanced

OpenMP features extend beyond the two-level model
• Some problems have a natural restriction on the number of MPI tasks
• Avoids extra communication overhead within the node
• Adds fine granularity (larger message sizes) and allows increased

dynamic load balancing across MPI tasks

147

Hybrid MPI/OpenMP reduces memory usage
•  Many applications will not fit into the node memory using

Pure MPI (e.g. per core) because of the memory overhead
for each MPI task

•  Smaller number of MPI processes. Save the memory
needed for the executables and process stack copies.

•  Larger domain for each MPI process, so fewer ghost cells
– e.g. Combine 16 10x10 domains to one 40x40. Assume 2 ghost

layers.
– Total grid size: Original: 16x14x14=3136, new: 44x44=1936.

•  Save memory for MPI buffers due to smaller number of MPI
tasks.

•  Fewer messages, larger message sizes, and smaller MPI all-
to-all communication sizes improve performance.

148

Example of Hybrid Code

Program hybrid
 call MPI_INIT_THREAD (required, provided, ierr)
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
 … some computation and MPI communication
 call OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL DO PRIVATE(i)
 !$OMP& SHARED(n)
 do i=1,n
 … computation
 enddo
 !$OMP END PARALLEL DO
 … some computation and MPI communication
 call MPI_FINALIZE (ierr)
 end

149

Supported levels of thread safety
• Defined by MPI standard in the form of commitments a multithreaded

application makes to the MPI implementation. Not specific to hybrid
MPI/OpenMP.

• Use MPI_INIT_THREAD (required, provided, ierr), as an alternative to
MPI_INIT (ierr)
–  IN: “required”, desired level of thread support (integer)
– OUT: “provided”, provided level of thread support (integer)
– Returned “provided” maybe lower than “required”

•  Thread support levels:
– MPI_THREAD_SINGLE: Only one thread will execute
– MPI_THREAD_FUNNELED: Process may be multi-threaded, but only master thread

will make MPI calls (all MPI calls are ’’funneled'' to master thread)
– MPI_THREAD_SERIALIZED: Process may be multi-threaded, multiple threads may

make MPI calls, but only one at a time: MPI calls are not made concurrently from
two distinct threads (all MPI calls are ’’serialized'')

– MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no restrictions

150

Thread support levels
environment variable

MPICH_MAX_THREAD_SAFET
Y

thread support level

not set MPI_THREAD_SINGLE

single MPI_THREAD_SINGLE

funneled MPI_THREAD_FUNNELED

serialized MPI_THREAD_SERIALIZED

multiple MPI_THREAD_MULTIPLE

• Different compilers may have different max level of thread support

• Make sure to set the environment variable in order to get the desired thread level.
Otherwise, you may get a lower level than desired even if the compiler supports it

151

MPI calls inside OMP MASTER
• MPI_THREAD_FUNNELED is required
• OMP MASTER does not include any barrier. If the application needs

a barrier (e.g., to prevent race conditions between the buffer usage in
the MPI call and some numerical buffer read or write in other threads)
then explicit OMP BARRIERs may be needed

• Such barriers would imply that all other threads are sleeping while the
master thread does MPI communication! (may not be able to
saturate the inter-node bandwidth)

!$OMP BARRIER
!$OMP MASTER
 call MPI_xxx(…)
!$OMP END MASTER
!$OMP BARRIER

152

MPI calls inside OMP SINGLE

• MPI_THREAD_SERIALIZED is required
• OMP_BARRIER or an implicit barrier is needed at the beginning since

OMP_SINGLE only guarantees synchronization at the end
•  It also implies all other threads are sleeping while one thread does MPI

communication! (may not be able to saturate the inter-node bandwidth)

!$OMP BARRIER
!$OMP SINGLE
 call MPI_xxx(…)
!$OMP END SINGLE

153

THREAD FUNNELED/SERIALIZED vs. Pure MPI

•  FUNNELED/SERIALIZED:
– All other threads are sleeping while single thread communicating
– Only one thread communicating maybe not able to saturate the

inter-node bandwidth

•  Pure MPI:
– Every CPU communicating may over saturate the inter-node

bandwidth

•  Overlap communication with computation!

154

Overlap communication and computation
•  Is a good strategy for improving performance

– Use MPI inside parallel region with thread-safe
MPI

• Need at least MPI_THREAD_FUNNELED
• Many “easy” hybrid programs only need

MPI_THREAD_FUNNELED
– Simplest and least error-prone way is to use

MPI outside parallel region, and allow only
master thread to communicate between MPI
tasks

– While this single master is making MPI calls,
other threads are computing

• Must be able to separate codes that can run
before or after ghost zone or halo info is
received. Can be very hard conceptually

• May lose compiler optimizations such as
vectorization

 !$OMP PARALLEL
 if (my_thread_rank < 1) then
 call MPI_xxx(…)
 else
 do some computation
 endif
 !$OMP END PARALLEL

155

PARSEC: overlap comp and comm (1)

Original Force Pseudocode

do type
 do atom
 calc A & B
 reduceAll A & B to master
 calc ∆force = f(A&B) on master
 store force on master
 end atom
end type

➢  Preemptively create an array of comms,
one for each atom, to allow mpi ranks
without data to move to the next atom

➢  Atom loop is threaded, allowing
multiple atoms to be solved
simultaneously

➢  Use MPI_THREAD_MULTIPLE,
multiple threads call MPI

Improved Version with
MPI_THREAD_MULTIPLE

do type
 MPI_COMM_SPLIT(atom, rank_has_data)
 !$OMP DO
 do atom
 if comm(atom) = MPI_COMM_NULL, cycle
 calc A & B
 reduceAll(comm(atom), A)
 calc ∆force = f(A&B)
 reduceAll(comm(atom), ∆force)
 store locally with master of comm(atom)
 end atom
 !$OMP END DO
end type

Courtesy	of	Kevin	Go;,	NERSC

156

PARSEC: overlap comp and comm (2)

Courtesy	of	Kevin	Go;,	NERSC

157

MPI vs. OpenMP scaling analysis for optimal
configuration

Low
er is B

etter

Courtesy of Chris Daley, NERSC

Find the sweet spot for hybrid MPI/OpenMP

•  Each line represents multiple
runs using fixed total number
of cores = #MPI tasks x
#OpenMP threads/task

•  Scaling may depend on the
kernel algorithms and problem
sizes

•  In this test case, 15 MPI tasks
with 8 OpenMP threads per
task is optimal

158

VASP: MPI/OpenMP Scaling Study

Courtesy	of	Zhengji	Zhao,NERSC	

•  Original MPI parallelization
– Over the bands (high level)
– Over Fourier coefficient of the bands (low level)

•  MPI + OpenMP parallelization
– MPI over bands (high level)
– OpenMP threading over the coefficients of

bands, either by explicitly adding OpenMP
directives or via using threaded FFTW and
LAPACK/BLAS3 libraries

– No nested OpenMP
– SIMD vectorization is deployed extensively
– MPI/OpenMP scaling study to find the sweet

spot
– Other tuning options

159

Best practices for Hybrid MPI/OpenMP (1)
•  With sequential code, decompose with MPI first, then add OpenMP

•  Use profiling tools to find hotspots. Add OpenMP and check

correctness incrementally
•  Choose between fine grain or coarse grain parallelism

implementation
•  Reduce number of OpenMP parallel regions to reduce overhead

costs
•  Parallelize outer loop and consider loop collapse, loop fusion or loop

permutation to give all threads enough work, and to optimize thread
cache locality. Use NOWAIT clause if possible

•  Minimize shared variables, minimize serial/critical/barrier sections
•  Pay attention to load imbalance. If needed, try dynamic scheduling

or implement own load balance scheme

160

Best practices for Hybrid MPI/OpenMP (2)
• Decide whether to overlap MPI communication with thread computation

• Simplest and least error-prone way is to use MPI outside parallel region,

and allow only master thread to communicate between MPI tasks.
MPI_THREAD_FUNNELED is usually the best choice.

• Consider OpenMP TASKing
• Consider nested OpenMP
• Consider OpenMP SIMD for better vectorization
• Experiment with different combinations of MPI tasks and number of

threads per task. Less MPI tasks may not saturate inter-node bandwidth
• Be aware of NUMA domains
• Leave some cores idle on purpose, for memory capacity or bandwidth

capacity

161

Why Hybrid MPI/OpenMP code is sometimes slower?

•  All threads are idle except one while MPI communication
– Need overlap comp and comm for better performance
– Critical Section for shared variables

•  Thread creation overhead
•  Cache coherence, false sharing
•  Data placement, NUMA effects
•  Natural one level parallelism problems
•  Pure OpenMP code performs worse than pure MPI within

node
•  Lack of optimized OpenMP compilers/libraries

162

Hybrid programming with MPI + OpenMP
is a viable and efficient model

•  MPI+OpenMP interoperability can happen in multiple ways –
Funneled and Serialized modes are most common where a single
thread makes MPI calls at a time

•  THREAD_MULTIPLE is becoming increasingly common where
multiple threads can make MPI calls simultaneously (“fully multi‐
threaded”)
– Now provided by almost all implementations
– Optimization is important

•  Other options such as “MPI everywhere” are also possible,
especially with advanced MPI options
– Solutions with no MPI (not covered here) are also emerging (HPX)

•  Improvements such as “endpoints” (multiple addressable communication
entities within a single MPI process) may eventually lead to more options
than just funneled, serialized, and multiple

Courtesy of Alice Koniges
163

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

164

A naive “srun” causes a mess in process/
thread affinity

Example: 16 MPI tasks x 8 OpenMP threads per task on a single 68-core KNL quad,cache node
% export OMP_NUM_THREADS=8

% export OMP_PROC_BIND=spread (other choice are “close”,”master”,”true”,”false”)

% export OMP_PLACES=threads (other choices are: cores, sockets, and various ways to specify
explicit lists)

% srun -n 16 ./xthi |sort -k4n,6n

 Hello from rank 0, thread 0, on nid02304. (core affinity = 0)
 Hello from rank 0, thread 1, on nid02304. (core affinity = 144) (on physical core 8)
 Hello from rank 0, thread 2, on nid02304. (core affinity = 17)
 Hello from rank 0, thread 3, on nid02304. (core affinity = 161) (on physical core 25)
 Hello from rank 0, thread 4, on nid02304. (core affinity = 34)
 Hello from rank 0, thread 5, on nid02304. (core affinity = 178) (on physical core 42)
 Hello from rank 0, thread 6, on nid02304. (core affinity = 51)
 Hello from rank 0, thread 7, on nid02304. (core affinity = 195) (on physical core 59)
 Hello from rank 1, thread 0, on nid02304. (core affinity = 0)
 Hello from rank 1, thread 1, on nid02304. (core affinity = 144) (on physical core 8)

 ...
 It is a mess!

165

Cori KNL: the importance of “srun” -c and
--cpu_bind Options
• The reason: 68 is not divisible by #MPI tasks!

– Each MPI task is getting 68x4 / #MPI tasks of logical cores as the
domain size

– MPI tasks are crossing tile boundaries

• Let’s set number of logical cores per MPI task (-c) manually by
wasting extra 4 cores on purpose, which is 256 / #MPI tasks
– Meaning to use 64 cores only on the 68-core KNL node, and spread

the logical cores allocated to each MPI task evenly among these 64
cores

– Now It looks good!

% srun -n 16 -c 16 --cpu_bind=cores ./xthi
Hello from rank 0, thread 0, on nid09244. (core affinity = 0)
Hello from rank 0, thread 1, on nid09244. (core affinity = 136) (on physical core 0)
Hello from rank 0, thread 2, on nid09244. (core affinity = 1)
Hello from rank 0, thread 3, on nid09244. (core affinity = 137) (on physical core 1)
 ...

Similarly with Intel MPI:
% export I_MPI_PIN_DOMAIN=16
% mpirun -n 16 ./xthi

166

Now it looks good!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
204 220 221
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
86 102 103
154 155 156 157 158 159 160 161 170 171
222 238 239
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
104
172
240
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
120
188 196 197 198 199
256

And so on for other MPI tasks and
threads ….

Process/thread affinity are good! (Marked first 6 and last MPI tasks only)

MPI
rank 0
MPI
rank 1
MPI
rank 2
MPI
rank 3
MPI
rank 4
MPI
rank 5

MPI rank
15

….

167

Cori: essential runtime settings for
process/thread affinity

• Use srun -c and --cpu_bind flags to bind tasks to CPUs
–  -c <n> (or --cpus-per-task=n) allocates (reserves) n CPUs per task

(process). It helps to evenly spread MPI tasks
– Use --cpu_bind=cores (no hyperthreads) or --cpu_bind=threads (if

hyperthreads are used)

• Use OpenMP envs, OMP_PROC_BIND and OMP_PLACES to fine
pin each thread to a subset of CPUs allocated to the host task
– Different compilers may have different default values for them
– The following provide compatible thread affinity among Intel, GNU and Cray

compilers:
OMP_PROC_BIND=true # Specifying threads may not be moved between CPUs
OMP_PLACES=threads # Specifying a thread should be placed in a single CPU

168

Cori: essential runtime settings for
MCDRAM memory affinity

•  In quad,cache mode, no special setting is needed to use
MCDRAM

•  In quad,flat mode, using quad,flat as an example
– NUMA node 1 is MCDRAM

• Enforced memory mapping to MCDRAM
–  If using >16 GB, malloc will fail
– Use “numactl -m 1 ./myapp” as the executable (instead of “./myapp”)
– Or add “--mem_bind=map_mem:1” as an “srun” flag

• Preferred memory mapping to MCDRAM
–  If using >16 GB, malloc will spill to DDR
– Use “numactl -p 1 ./myapp” as the executable (instead of “./myapp”)
– Or add “--mem_bind=preferred:map_mem:1” as an “srun” flag

169

Cori: sample job script to run on KNL
quad,cache nodes

Courtesy of Zhengji Zhao, NERSC

170

Courtesy of Zhengji Zhao, NERSC

Cori: sample job script to run on KNL
quad,cache nodes

171

 Adapted from Zhengji Zhao, NERSC

Cori: sample job script to run on KNL
quad,flat nodes

172

Naïve vs. optimal affinity

Application Benchmark Performance on Cori

173

Exercise: hybrid MPI/OpenMP affinity choices
•  Hybrid MPI/OpenMP code: xthi.c
•  Nested OpenMP code: xthi-nested.c
•  Sample output:

% srun -n 2 -c 32 --cpu_bind=cores ./xthi |sort -k4n,6n
 Hello from rank 0, thread 0, on nid00019. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00019. (core affinity = 2)
 Hello from rank 0, thread 2, on nid00019. (core affinity = 4) …

•  Experiment with different OMP_NUM_THREADS,
OMP_PROC_BIND, and OMP_PLACES settings to check thread
affinity on different compute node architectures (for example, Cori
Haswell and KNL).

•  Try different compilers. Compile your own or use our pre-built
binaries: check-hybrid.cori.intel, check-hybrid.cori.gnu
–  Compare OMP_PROC_BIND=spread vs OMP_PROC_BIND=true for gnu compiler

174

Upcoming in OpenMP 5.0: Display Affinity

•  Berkeley Lab proposed to have the display affinity support.
– Accepted into TR6 for OpenMP 5.0

•  Two runtime environment variables
– OMP_DISPLAY_AFFINITY
– OMP_DISPLAY_AFFINITY_FORMAT

•  Runtime APIs to get/set the thread affinity info
– omp_get_display_affinity, omp_set_display_affinity
– omp_get_affinity_format, omp_set_affinity_format
– omp_display_affinity
– omp_capture_affinity # write into buffer

175

OMP_AFFINITY_FORMAT fields
 Short Name Long name Meaning

L thread_level from omp_get_level()

n thread_num from omp_get_thread_num()

a thread_affinity the numerical identifiers of the processors the current thread is
binding to, in the format of a comma separated list of OpenMP
thread places or a range of thread places described with non-
negative numbers as those used in OMP_PLACES.

h host host or node name

p process_id process id used by the implementation (such as the process id for
the MPI process)

N num_threads from omp_get_num_threads()

A ancestor_tnum from omp_get_ancestor_thread_num(). One level up only.

Sample display using format "Thread Affinity: %0.5L, %.10n, %.20a”:
Thread Affinity:00001, 0, 0-3
Thread Affinity:00001, 1, 4-7

176

Outline
•  The common core: a quick review
•  OpenMP Tasks
•  The divide and conquer pattern
•  Task group, task loops, and more
•  Threadprivate
•  The other workshare constructs
•  Do across loops
•  The OpenMP Memory model
•  Point to point synchronization, atomic, and locks
•  NUMA systems
•  Thread affinity
•  Hybrid MPI/OpenMP
•  More about process and thread affinity
•  A quick survey of the rest of OpenMP

177

An Outline of OpenMP

•  Parallel Construct and associated
clauses
–  Create a team of threads

•  Data Environment
–  Controlling how data is shared

•  Worksharing constructs:
–  Splitting up work among a team of

threads
•  SIMD constructs
–  Explicit vectorization

•  Task Constructs
–  Create and manage explicit tasks

•  Device Constructs
–  Offloading work to GPUs, many-core

CPUs, and other attached devices

•  Synchronization (and the master
construct)
–  Add order constraints to your parallel

program
•  Cancelation
–  Ending work in a controlled manner

•  User Defined Reductions
–  Generalizing the reduction concept

•  Combined and composite constructs
–  Type less and occasionally new

semantics
•  Runtime libraries and environment

variables

178

An Outline of OpenMP

•  Parallel Construct and associated
clauses
–  Create a team of threads

•  Data Environment
–  Controlling how data is shared

•  Worksharing constructs:
–  Splitting up work among a team of

threads
•  SIMD constructs
–  Explicit vectorization

•  Task Constructs
–  Create and manage explicit tasks

•  Device Constructs
–  Offloading work to GPUs, many-core

CPUs, and other attached devices

•  Synchronization (and the master
construct)
–  Add order constraints to your parallel

program
•  Cancelation
–  Ending work in a controlled manner

•  User Defined Reductions
–  Generalizing the reduction concept

•  Combined and composite constructs
–  Type less and occasionally new

semantics
•  Runtime libraries and environment

variables

We covered the key points for most of OpenMP but we’ve said little or nothing about four
topics: SIMD, Devices, Cancelation and User Defined Reductions

179

The Rest of OpenMP

•  SIMD

•  Devices

•  Cancelation

•  User Defined Reductions

180

Vector SIMD (single instruction, multiple data)
•  A functional unit typically associated with a CPU core takes a single

stream of instructions that are applied in parallel to the elements of
values in special vector registers.

•  SSE, 128 bits. 2 DP or 4 SP
•  AVX, 256 bits, 4 DP or 8 SP (Haswell)
•  AVX-512, 512 bits, 8 DP or 16 SP (KNL)

•  Vector instructions usually generated by the compiler “automatically”
from loops

•  Best performance may require explicit coding.

+

X

Y

X + Y

+
x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation 181

Example Problem:
Numerical Integration

∫ 4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Δx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0 X 0.0

182

Serial PI program

static long num_steps = 8388608;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

 step = 1.0/(float) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5f)*step;
 sum = sum + 4.0f/(1.0f+x*x);
 }
 pi = step * sum;

}

Normally, I’d use double types throughout to minimize roundoff errors especially
on the accumulation into sum. But to maximize impact of vectorization for these
exercise, we’ll use float types.

Compile as (O3 no-vec), 0.0052 secs
Compile as (O3 autovec), 0.0023 secs

Note that literals (such as
4.0, 1.0 and 0.5) are
explicitly declared as
floats. This is very
important when trying to
get code to vectorize …
mixing types can kill
vectorization.

183

Pi Program: Explicit Vectorization with intriniscs (SSE)
 float pi_sse(int num_steps)
{ float scalar_one =1.0, scalar_zero = 0.0, ival, scalar_four =4.0, step, pi, vsum[4];
 step = 1.0/(float) num_steps;

 __m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
 __m128 one = _mm_load1_ps(&scalar_one);
 __m128 four = _mm_load1_ps(&scalar_four);
 __m128 vstep = _mm_load1_ps(&step);
 __m128 sum = _mm_load1_ps(&scalar_zero);
 __m128 xvec; __m128 denom; __m128 eye;

 for (int i=0;i< num_steps; i=i+4){ // unroll loop 4 times
 ival = (float)i; // and assume num_steps%4 = 0
 eye = _mm_load1_ps(&ival);
 xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
 denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
 sum = _mm_add_ps(_mm_div_ps(four,denom),sum);
 }
 _mm_store_ps(&vsum[0],sum);
 pi = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);
 return pi;
}

O3 (no-vec), 0.0052 secs
O3 (autovec), 0.0023 secs
SSE intrinsics, 0.00168 secs

184

Explicit Vectorization PI program

static long num_steps = 100000;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

 step = 1.0/(float) num_steps;
 #pragma omp for simd reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

185

Explicit Vectorization PI program

static long num_steps = 100000;
float step;
int main ()
{ int i; float x, pi, sum = 0.0;

 step = 1.0/(float) num_steps;
 #pragma omp parallel for simd reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

You can combine with parallel
for to get threads and SIMD

186

Illustration of combining thread and
SIMD parallelism

187

Figure from “Using OpenMP - the Next
Step” book by Ruud van de Pas et.al.

Pi Program: Vector intriniscs plus OpenMP
 float pi_sse(int num_steps)
{ float scalar_one =1.0, scalar_zero = 0.0, ival, scalar_four =4.0, step, pi, vsum[4];
 float local_sum[NTHREADS]; // set NTHREADS elsewhere, often to num of cores
 step = 1.0/(float) num_steps; pi = 0.0;
 #pragma omp parallel
 { int i, ID=omp_get_thread_num();
 __m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);
 __m128 one = _mm_load1_ps(&scalar_one);
 __m128 four = _mm_load1_ps(&scalar_four);
 __m128 vstep = _mm_load1_ps(&step);
 __m128 sum = _mm_load1_ps(&scalar_zero);
 __m128 xvec; __m128 denom; __m128 eye;
 #pragma omp for
 for (int i=0;i< num_steps; i=i+4){
 ival = (float)i;
 eye = _mm_load1_ps(&ival);
 xvec = _mm_mul_ps(_mm_add_ps(eye,ramp),vstep);
 denom = _mm_add_ps(_mm_mul_ps(xvec,xvec),one);
 sum = _mm_add_ps(_mm_div_ps(four,denom),sum);
 }
 _mm_store_ps(&vsum[0],sum);
 local_sum[ID] = step * (vsum[0]+vsum[1]+vsum[2]+vsum[3]);
 }
 for(int k = 0; k<NUM_THREADS;k++) pi+=local_sum[k];
 return pi;
}

To parallelize with OpenMP:
1.  Promote local_sum to an

array to there is a variable
private to each thread but
available after the parallel
region

2.  Add parallel region and
declare vector registers inside
the parallel region so each
thread has their own copy.

3.  Add workshop loop (for)
construct

4.  Add local sums after the
parallel region to create the
final value for pi

188

PI program Results:
4194304 steps
Times in Seconds (50 runs, min time reported)

0

0.001

0.002

0.003

0.004

0.005

0.006

Base: lits
float -no-vec

Lits float,
autovrec

List Float,
OMP SIMD

Lits Float,
OMP SIMD

Par For

SSE SSE, OMP
par for

run times(sec)

–  Intel Core i7, 2.2 Ghz, 8 GM 1600 MHz DDR3, Apple MacBook Air OS X 10.10.5.
–  Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 15.0.3.187 Build 20150408

Float, autovec 0.0023 secs
Float, OMP SIMD 0.0028 secs
Float, SSE 0.0016 secs

189

SIMD construct for explicit vectorization
•  #pragma omp simd [clause[[,] clause], …]
•  Where common clauses are:

safelen(length) Max # of concurrent iterations without breaking a
dependence

simdlen(length) preferred length of SIMD registers

linear(list[: linear-step]) Variables linear relation with iteration number
(xi = xorig + I * linear-step)

aligned(list[: alignment]) list items have given alignment

•  Plus the usual private, firstprivate, reduction, and collapse.
•  The SIMD construct Applies to a loop in standard form.
•  Can be combined with the for construct

190

SIMD example

void work(float *b, int n, int m)
{
 int i;
 #pragma omp simd safelen(16)
 for (i = m; i < n; i++)
 b[i] = b[i-m] - 1.0f;
}

•  Explicit control lets you “force” vectorization in cases where
the system might not otherwise use the vector units.

As long as the variable
m is less than or equal

to 16, this program will
work correctly

191

Explicit Vectorization – Performance
Impact

3.66x

2.04x 2.13x

4.34x

1.47x

2.40x

0.00x

0.50x

1.00x

1.50x

2.00x

2.50x

3.00x

3.50x

4.00x

4.50x

5.00x

Mandelbrot Volume
Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

R
el

at
iv

e
Sp

ee
d-

up

(h
ig

he
r i

s
be

tte
r)

ICC auto-vec

ICC SIMD directive

Source: M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP
with Vector Constructs for Modern Multicore SIMD Architectures. In Proc. of the Intl. Workshop on
OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

Explicit Vectorization looks better when you move to more complex problems.

192

VASP: SIMD Vectorization

Leveraging OpenMP parallelization with SIMD
via !$omp parallel do simd

Courtesy	of	Zhengji	Zhao,	NERSC

SIMD constructs:
– Loop vectorization via !$omp simd
– Function vectorization via !$omp

declare simd
– Both could be extended:

simdlen(x),
aligned(varlist[:alignment]),
uniform(varlist)

– Used schedule(simd:static) or
schedule(simd:static,x) to match the
chunk size with the SIMD width

193

The Rest of OpenMP

•  SIMD

•  Devices

•  Cancelation

•  User Defined Reductions

194

The growth of complexity in OpenMP
•  OpenMP started out in 1997 as a simple interface for the application

programmers more versed in their area of science than computer science.

•  The complexity has grown considerably over the years!

0

50

100

150

200

250

300

350

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

2.5

2.0 2.0
1.0 1.0 1.1

4.5

4.0

3.1
3.0

Merged C/C++ and Fortran spec

C/C++ spec

Fortran spec

Page counts (not counting front matter, appendices or index) for versions of OpenMP

year

Page counts (spec only)

The complexity of the full spec is overwhelming, so we focus on the 19 constructs most OpenMP
programmers restrict themselves to … the so called “OpenMP Common Core”

Tasks added to OpenMP ...
supports irregular parallelism

Target constructs added to OpenMP ...
supports host-device model

195

The OpenMP device programming model

#include <omp.h>
#include <stdio.h>
int main()
{
 printf(“There are %d devices\n”,
 omp_get_num_devices());
}

•  OpenMP uses a host/device model
–  The host is where the initial thread of the program begins execution
–  Zero or more devices are connected to the host

Device

…
…

…

…
… …

…
…

… …
…

…
… …

…

Host

196

OpenMP with target devices

1.  Program begins. Launches Initial thread running
on the host device.

2.  Implicit parallel region surrounds entire program

3.  Initial task begins execution

4.  Initial thread encounters
the target directive.

5.  Initial task generates a
target task which is a
mergable, included task

6.  Target task launches target
region on the device

10.  Initial task on host
continues once
execution associated
with the target region
completes

7.  A new initial thread runs on the device.

8.  Implicit parallel region surrounds device program

9.  Initial task executes code in the target region.

•  The target construct offloads execution to a device.
#pragma omp target
{….} // a structured block of code

197

The target data environment

Host thread

Generating Task

Initial task

Target task

#pragma omp target
{
 target region, can
use A, B and N

}

Device Initial
thread

Host thread
waits for the
task region to

complete

float A[N], B[N]; A, B and N
mapped to the

device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated arrays
are moved onto the device by default

before execution

Only the statically allocated arrays are
moved back to the host after the target

region completes

198

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
 __local float* l_sums, __global float* p_sums)
{
 int n_wrk_items = get_local_size(0);
 int loc_id = get_local_id(0);
 int grp_id = get_group_id(0);
 float x, accum = 0.0f; int i,istart,iend;

 istart = (grp_id * n_wrk_items + loc_id) * niters;
 iend = istart+niters;

 for(i= istart; i<iend; i++){
 x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

 l_sums[local_id] = accum;
 barrier(CLK_LOCAL_MEM_FENCE);
 reduce(l_sums, p_sums);
}

1.  Turn source code into a scalar
work-item

2.  Map work-items onto
an an N dim index

space.

4.  Run on hardware
designed around
the same SIMT
execution model

3.  Map data structures
onto the same index

space This is OpenCL kernel code … the sort of
code the OpenMP compiler generates on

your behalf

Third Party names are the property of their owners 199

A Generic Host/Device Platform Model

•  One Host and one or more Devices
–  Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing

Elements
•  Memory divided into host memory and device memory

Processing
Element

Device

…
…

…

…
… …

…
…

… …
…

…
… …

…

Host

Compute Unit

Third party names are the property of their owners. 200

Our host/device Platform Model and OpenMP

Processing
Element

Device

…
…

…

…
… …

…
…

… …
…

…
… …

…

Host

Compute Unit

Target
construct to get
onto a device

Teams construct to create a league of
teams with one team of threads on

each compute unit.

Distribute clause to assign
blocks of loop iterations to teams.

Parallel for simd to
run each block of
loop iterations on

the processing
elements

201

Our host/device Platform Model and OpenMP

Processing
Element

Device

…
…

…

…
… …

…
…

… …
…

…
… …

…

Host

Compute Unit

Target
construct to get
onto a device

Teams construct to create a league of
teams with one team of threads on

each compute unit.

Distribute clause to assign
blocks of loop iterations to teams.

Parallel for simd to
run each block of
loop iterations on

the processing
elements

Typical usage ... let the compiler do what’s best for the device:

#pragma omp target
 to get on the device

#pragma omp teams distribute parallel for simd
to assign work to the device processing elements

202

Our running example: a Jacobi solver

•  This program uses a Jacobi iterative method to solve a
system of linear equations (Ax= b).

•  Here is the basic idea behind the method.
– Rewrite the matrix A as a Lower Triangular (L), upper triangular (U)

and diagonal matrix (D):

 Ax = (L + D + U)x = b
– Carry out the multiplication and rearrange:

 Dx = b - (L+U)x --> x = (b-(L+U)x)/D
– Continue in an iterative manner until the error is small enough

 x_new = (b-(L+U)x_old)/D

203

Jacobi Solver (serial)

<<< allocate and initialize the matrix A and >>>
<<< vectors x1, x2 and b >>>
while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;
 xnew = iters % s ? x2 : x1;
 xold = iters % s ? x1 : x2;

 for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

 //
 // test convergence
 //
 conv = 0.0;
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

} // end while loop

204

Jacobi Solver (Par Targ, 1/2)
 while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;
 xnew = iters % 2 ? x2 : x1;
 xold = iters % 2 ? x1 : x2;
 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
 #pragma omp teams distribute parallel for simd private(i,j)
 for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

205

Jacobi Solver (Par Targ, 2/2)
 //
 // test convergence
 //
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:Ndim) map(tofrom:conv)
 #pragma omp teams distribute parallel for simd \
 private(i,tmp) reduction(+:conv)
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

} \\ end while loop

206

Jacobi Solver (Par Targ, 2/2)
 //
 // test convergence
 //
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:Ndim) map(tofrom:conv)
 #pragma omp teams distribute parallel for simd \
 private(i,tmp) reduction(+:conv)
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

} \\ end while loop

This worked but the performance was awful.
Why?

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB.

Third party names are the property of their owners. 207

Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))
 { iters++;
 xnew = iters % s ? x2 : x1;
 xold = iters % s ? x1 : x2;

 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
 #pragma omp teams distribute parallel for simd private(i,j)
 for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }
// test convergence
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:Ndim) map(tofrom:conv)
 #pragma omp teams distribute parallel for private(i,tmp) reduction(+:conv)
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);
 }

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device
2*Ndim*sizeof(TYPE) bytes

For each iteration, copy to
device 2*Ndim*sizeof(TYPE)
bytes

208

Target data directive
•  The target data construct creates a target data region.
•  You use the map clauses for explicit data management

#pragma omp target data map(to: A,B) map(from: C)
{….} // a structured block of code

•  Data copied into the device data environment at the beginning
of the directive and at the end

•  Inside the target data region, multiple target regions can
work with the single data region

#pragma omp target data map(to: A,B) map(from: C)
{
 #pragma omp target
 {do lots of stuff with A, B and C}
 {do something on the host}
 #pragma omp target
 {do lots of stuff with A, B, and C}
} 209

Target update directive
•  You can update data between target regions with the target

update directive.
#pragma omp target data map(to: A,B) map(from: C)
{
 #pragma omp target
 {do lots of stuff with A, B and C}

 #pragma omp update from(A)

 host_do_something_with(A)

 #pragma omp update to(A)

 #pragma omp target
 {do lots of stuff with A, B, and C}
}

Copy A on the
device to A on the
host.

Copy A on the host
to A on the device.

210

Target update details
•  #pragma omp target update clause[[[,]clause]...]new-line
•  creates a target task to handle data movement between the

host and a device

•  clause is either motion-clause or one of the following:
–  if(scalar-expression)
– device(integer-expression)
– nowait
– depend (dependence-type : list)

•  the motion-clause is one of the following:
–  to(list)
–  from(list)

•  This directive generates a target task.
•  nowait and depend apply to the target task running on the

host.

211

Jacobi Solver (Par Targ Data, 1/2)
 #pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
 { iters++;
 // alternate x vectors.
 xnew = iters % 2 ? x2 : x1;
 xold = iters % 2 ? x1 : x2;

#pragma omp target
 #pragma omp teams distribute parallel for simd private(j)
 for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

212

Jacobi Solver (Par Targ Data, 2/2)

 //
 // test convergence
 //
 conv = 0.0;
#pragma omp target map(tofrom: conv)
{
#pragma omp teams distribute parallel for simd \
 private(tmp) reduction(+:conv)
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
} // end target region
 conv = sqrt((double)conv);
} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per loop 131.94 secs
Above plus target
data region

18.37 secs

Third party names are the property of their owners. 213

The Rest of OpenMP

•  SIMD

•  Devices

•  Cancelation

•  User Defined Reductions

214

Cancellation

#pragma omp parallel
{
 for(int i=0; i<N; i++){

 res=do_some_work();

 if (res == DONE){
 #pragma omp cancel parallel
 }

 do_more_work();

 #pragma omp cancelation point
 }
}

The thread that encounters
this pragma signals

cancellation and ends
execution of parallel region

Threads check for
cancellation signal and end

their execution of the
parallel region

•  Sometimes you want an OpenMP construct to shut down gracefully
–  Error condition that prevent threads from continuing
–  The work is done.

•  Cancellation: parallel, taskgroup, sections and worksharing loops
•  OMP_CANCELLATION environment variable must be set to true to enable

cancelation.
215

The Rest of OpenMP

•  SIMD

•  Devices

•  Cancelation

•  User Defined Reductions

216

User Defined Reductions
•  What if you need a reduction in OpenMP, but the standard built in

reductions do not cover your needs?
•  OpenMP added a capability for user defined reductions.
•  The declare reduction directive

#pragma omp declare reduction (reduction_identifier : typename : \
 combiner) [initializer-clause]

name Description
Reduction_identifier A C/C++ identifier. May be one of the existing, predefined reduction

operators

typename The name of a type or list of types if the reduction applies at different
instances to different types

combiner A function or expression for pairwise combination of results from threads
using variables:
omp_orig: value of ”original variable” from scope prior to the reduction
omp_priv: value used to initialize private, reduction variables
omp_in, omp_out: variables from each thread with result in omp_out

Initializer-clause 2 forms: omp_priv = initializer or
 omp_priv = function(argument_list)

217

UDR Example
#define N 128
int main()
{
 int *a;
 int result = INT_MAX;
 // create and initialize the array a

 // declare the user defined reduction
 #pragma omp declare reduction (my_abs_min : int : \
 omp_out = abs(omp_in) < omp_out ? abs(omp_in) : abs (omp_out)) \
 initializer (omp_priv = INT_MAX)

 #pragma omp parallel for reduction(my_abs_min:result)
 for (int i=0; i<N; i++){
 if (abs(a[i] < result))
 result = abs(a[i]);
 }
 printf("result = %d \n",result);
}

218

Conclusion

•  That’s it … you’ve now gone beyond the common core.
•  At this point, you should be able to grab some OpenMP

books and a copy of the specification, and run with OpenMP
on your own

219

OpenMP organizations

• OpenMP architecture review board URL, the
“owner” of the OpenMP specification:

www.openmp.org
• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join the ARB and cOMPunity
and help define the future of OpenMP

220

 http://www.openmp.org

221

Books about OpenMP

•  A book about OpenMP by a
team of authors at the forefront
of OpenMP’s evolution.

l  A book about how to “think
parallel” with examples in
OpenMP, MPI and java

222

Resources:

A great new book that
covers OpenMP
features beyond

OpenMP 2.5

223

Background references

A great book that explores key
patterns with Cilk, TBB, OpenCL,
and OpenMP (by McCool, Robison,
and Reinders)

An excellent introduction and
overview of multithreaded
programming in general (by Clay
Breshears) 224

Extra content

•  Additional examples
– Divide and conquer: recursive matrix multiplication
– Task Dependencies: 1D Stencil
– Flow Graph Analyzer and task dependencies

•  Notes on Parallel random number generation

225

Recursive matrix multiplication

•  Quarter each input matrix and output matrix
•  Treat each submatrix as a single element and multiply
•  8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

226

Recursive matrix multiplication
 How to multiply submatrices?

•  Use the same routine that is computing the full matrix
multiplication
– Quarter each input submatrix and output submatrix
– Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1 +
 A121,1·B211,1 + A121,2·B212,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2

227

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Recursive matrix multiplication
 Recursively multiply submatrices

•  Also need stopping criteria for recursion

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,

 double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);

// C11 += A12*B21

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);

 . . .

}

l  Need range of indices to define each submatrix to be used

228

#define THRESHOLD 32768 // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
 double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

{
 if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)
 matmult (mf, ml, nf, nl, pf, pl, A, B, C);
 else
 {
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C11 += A11*B11
 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C11 += A12*B21
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C12 += A11*B12
 matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C12 += A12*B22
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C21 += A21*B11
 matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C21 += A22*B21
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C22 += A21*B12
 matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C22 += A22*B22
}
#pragma omp taskwait

 }
}

Recursive matrix multiplication
•  Could be executed in parallel as 4 tasks
–  Each task executes the two calls for the same output submatrix of C

•  However, the same number of multiplication operations needed

229

Extra content

•  Additional examples
– Divide and conquer: recursive matrix multiplication
– Task Dependencies: 1D Stencil
– Flow Graph Analyzer and task dependencies

•  Notes on Parallel random number generation

230

1D Stencil Example

The heat equation:

double k = 0.5; // heat transfer coefficient
double dt = 1.; // time step
double dx = 1.; // grid spacing

double heat(double left, double mid, double right)
{
 return mid+(k*dt/dx*dx)*(left-2*mid+right);
}

231

1D Stencil Example

Application of the heat equation to a 1D array

void heat_part(int size, double* next,
 double* left,
 double *mid, double *right)
{
 next[0] = heat(left[size-1], mid[0], mid[1]);

 for (int i = 1; i < size-1; ++i)
 next[i] = heat(mid[i-1], mid[i], mid[i+1]);

 next[size-1] = heat(mid[size-2], mid[size-1],
 right[0]);
}

232

1D Stencil Example

Dividing the work into partitions of the array

for (int i = 0; i < np; ++i) {
 heat_part(nx, &next[i*nx],
 ¤t[idx(i-1, np)*nx],
 ¤t[i*nx],
 ¤t[idx(i+1, np)*nx]);
}

//idx does the wrapping here
int idx(int i, int size)
{
 return (i < 0) ? (i + size) % size : i % size;
}

233

1D Stencil Example

Reads and writes need to be done on separate arrays

U[0] = malloc(np*nx * sizeof(double));
U[1] = malloc(np*nx * sizeof(double));

double* current = U[0];
double* next = U[1];

234

1D Stencil Example

Each iteration alternates between arrays

for(int t = 0; t < nt; t++) {
 for (int i = 0; i < np; ++i) {
 heat_part(nx, &next[i*nx],
 ¤t[idx(i-1, np)*nx],
 ¤t[i*nx],
 ¤t[idx(i+1, np)*nx]);
 }
 current = U[(t+1) % 2];
 next = U[t % 2];
}

235

1D Stencil Example

Because of the partitioning, one task directive is needed

for(int t = 0; t < nt; t++) {
 for (int i = 0; i < np; ++i) {
#pragma omp task depend(out: next[i*nx]) \
 depend(in: current[idx(i-1, np)*nx],\
 current[i*nx], current[idx(i+1, np)*nx])
 heat_part(nx, &next[i*nx],
 ¤t[idx(i-1, np)*nx],
 ¤t[i*nx],
 ¤t[idx(i+1, np)*nx]);
 }
 current = U[(t+1) % 2];
 next = U[t % 2];
}
#pragma omp taskwait

236

Extra content

•  Additional examples
– Divide and conquer: recursive matrix multiplication
– Task Dependencies: 1D Stencil
– Flow Graph Analyzer and task dependencies

•  Notes on Parallel random number generation

237

238
238

OMPT and Flow Graph
Analyzer: Visualization

and Analysis of OpenMP
Task Dependencies

Vishakha Agrawal
Intel Corp

May 2 2018

AGENDA

 •  Introduction to Flow Graph Analyzer
•  Original code showing OpenMP inner loop
•  FGA screenshot where you can see additional

dependency
•  New code with perf fix
•  Chart/graph showing performance gain.

239

Flow Graph Analyzer (FGA) :
Released as Tech. Preview in Intel Parallel Studio for TBB

•  A visualization tool that supports the analysis and design of parallel applications that use

computational graphs

A Proof of Concept system for OpenMP tasks
with depend clauses 240

Original code showing OpenMP inner loop

•  There are two performance improvement opportunities:
1.  Between each iteration there is a node that uses depend to create a barrier
2.  There are depend items that can be removed due to transitivity

241

The dependence graph displayed in FGA
Optimization 1: the barrier node

Note; All tasks pass through this one choke point …. Basically meaning we are
using depend clauses to create the equivalent of a taskwait

242

The dependence graph displayed in FGA
Optimization 1: the barrier node

Note; All tasks pass through this one choke point …. Basically meaning we are
using depend clauses to create the equivalent of a taskwait

243

The dependence graph displayed in FGA
Optimization 2: removal of transitive dependences

244

Transitive OpenMP Dependences in FGA

•  a <x b means a must execute before b due to a dependence on location x
•  As shown in the left figure, FGA does NOT display a <x d since a <x b and b <x d
•  But in the right figure, there is no transitive dependence due to y, so FGA does show a <y d
•  However, the ordering is enforced due to the x dependence, and therefore it is legal to

remove y from depend clause for d in the source code to reduce book-keeping
•  Whether this is good idea or not (maintainability or readability) is left to developers

#pragma omp task depend(out: x)
 a(&x)
#pragma omp task depend(inout: x)
 b(&x);
#pragma omp task depend(in: x)
 c(x)
#pragma omp task depend(in: x)
 d(x)

d

a b

c

a <x b b <x c

b <x d

a <x c

a <x d

#pragma omp task depend(out: x, y)
 a(&x, &y)
#pragma omp task depend(inout: x)
 b(&x);
#pragma omp task depend(in: x)
 c(x)
#pragma omp task depend(in: x, y)
 d(x, y)

d

a b

c

a <x b b <x c

b <x d

a <x c

a <y d

a <x d

Displayed in FGA
Not displayed in FGA

245

Modified code with both optimizations:

246

Performance Charts:

There is roughly a constant 100 MFLOPS improvement

Configuration Info:
Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
Compiler Intel 18.0, Arch: intel64
KMP_HW_SUBSET=1S,18C,1T
KMP_AFFINITY=granularity=fine,compact
 247

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

248

•  The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and
workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily
representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

•  Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

•  INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

•  Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation
in the U.S. and other countries.

248

Extra content

•  Additional examples
– Divide and conquer: recursive matrix multiplication
– Task Dependencies: 1D Stencil
– Flow Graph Analyzer and task dependencies

•  Notes on Parallel random number generation

249

Computers and random numbers
•  We use “dice” to make random numbers:
– Given previous values, you cannot predict the next value.
– There are no patterns in the series … and it goes on forever.

•  Computers are deterministic machines … set an initial state,
run a sequence of predefined instructions, and you get a
deterministic answer
– By design, computers are not random and cannot produce random

numbers.
•  However, with some very clever programming, we can make

“pseudo random” numbers that are as random as you need
them to be … but only if you are very careful.

•  Why do I care? Random numbers drive statistical methods
used in countless applications:
– Sample a large space of alternatives to find statistically good answers

(Monte Carlo methods).

250

Monte Carlo Calculations
Using Random numbers to solve tough problems

•  Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

•  Example: Computing π with a digital dart board:

l  Throw darts at the circle/square.
l  Chance of falling in circle is

proportional to ratio of areas:
Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
l  Compute π by randomly

choosing points, count the
fraction that falls in the circle,
compute pi.

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148
251

Parallel Programmers love Monte Carlo
algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{
 long i; long Ncirc = 0; double pi, x, y;
 double r = 1.0; // radius of circle. Side of squrare is 2*r
 seed(0,-r, r); // The circle and square are centered at the origin
 #pragma omp parallel for private (x, y) reduction (+:Ncirc)
 for(i=0;i<num_trials; i++)
 {
 x = random(); y = random();
 if (x*x + y*y) <= r*r) Ncirc++;
 }

 pi = 4.0 * ((double)Ncirc/(double)num_trials);
 printf("\n %d trials, pi is %f \n",num_trials, pi);
}

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

252

Linear Congruential Generator (LCG)
•  LCG: Easy to write, cheap to compute, portable, OK quality

l  If you pick the multiplier and addend correctly, LCG has a period of
PMOD.

l  Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). I used the following:

u MULTIPLIER = 1366
u ADDEND = 150889
u PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

253

LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{
 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

Seed the pseudo random
sequence by setting
random_last

254

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10 R
elative error

Log10 number of samples

Run the same
program the
same way and
get different
answers!

That is not
acceptable!

Issue: my LCG
generator is not
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP. 255

LCG code: threadsafe version

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{
 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

random_last carries state
between random number
computations,

To make the generator
threadsafe, make
random_last threadprivate
so each thread has its own
copy.

256

Thread safe random number generators

Log
10 R

elative error

Log10 number of samples Thread safe
version gives the
same answer each
time you run the
program.

But for large
number of
samples, its quality
is lower than the
one thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe

257

Pseudo Random Sequences
•  Random number Generators (RNGs) define a sequence of pseudo-random

numbers of length equal to the period of the RNG

l  In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

l  Grab arbitrary seeds and you may generate overlapping sequences
u  E.g. three sequences … last one wraps at the end of the RNG period.

l  Overlapping sequences = over-sampling and bad statistics … lower quality or
even wrong answers!

Thread 1
Thread 2

Thread 3

258

Parallel random number generators
•  Multiple threads cooperate to generate and use random

numbers.
•  Solutions:
– Replicate and Pray
– Give each thread a separate, independent generator
– Have one thread generate all the numbers.
– Leapfrog … deal out sequence values “round robin”

as if dealing a deck of cards.
– Block method … pick your seed so each threads gets

a distinct contiguous block.
•  Other than “replicate and pray”, these are difficult to

implement. Be smart … buy a math library that does it
right.

If done right, can
generate the
same sequence
regardless of the
number of threads
…

Nice for
debugging, but
not really needed
scientifically.

Intel’s Math kernel Library supports all of these
methods.

259

MKL Random number generators (RNG)

#define BLOCK 100
double buff[BLOCK];
VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,

 BLOCK, buff, low, hi)

vslDeleteStream(&stream);

l  MKL includes several families of RNGs in its vector statistics library.
l  Specialized to efficiently generate vectors of random numbers

Initialize a
stream or
pseudo
random
numbers

Select type of RNG
and set seed

Fill buff with BLOCK pseudo rand.
nums, uniformly distributed with values
between lo and hi.

Delete the stream when you are done

260

Wichmann-Hill generators (WH)

•  WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG.

•  Easy to use, just make each stream threadprivate and initiate RNG
stream so each thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

 …

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

261

Independent Generator for each thread

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

WH one
thread
WH, 2
threads
WH, 4
threads

Log
10 R

elative error

Log10 number of samples
Notice that once
you get beyond
the high error,
small sample
count range,
adding threads
doesn’t
decrease quality
of random
sampling.

262

 #pragma omp single
 { nthreads = omp_get_num_threads();
 iseed = PMOD/MULTIPLIER; // just pick a seed
 pseed[0] = iseed;
 mult_n = MULTIPLIER;
 for (i = 1; i < nthreads; ++i)
 {

 iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);
 pseed[i] = iseed;
 mult_n = (mult_n * MULTIPLIER) % PMOD;

 }

 }
 random_last = (unsigned long long) pseed[id];

Leap Frog method
•  Interleave samples in the sequence of pseudo random numbers:
– Thread i starts at the ith number in the sequence
– Stride through sequence, stride length = number of threads.

•  Result … the same sequence of values regardless of the number of
threads.

One thread
computes offsets
and strided
multiplier

LCG with Addend = 0 just
to keep things simple

Each thread stores offset starting
point into its threadprivate “last
random” value

263

Same sequence with many threads.

•  We can use the leapfrog method to generate the same
answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for
the y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

264

